找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[复制链接]
查看: 39612|回复: 64
发表于 2025-3-21 19:05:03 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ECCV 2020
副标题16th European Confer
编辑Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm
视频videohttp://file.papertrans.cn/235/234224/234224.mp4
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur
描述The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic..The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.. .. .
出版日期Conference proceedings 2020
关键词computer networks; computer vision; education; face recognition; image analysis; image coding; image proce
版次1
doihttps://doi.org/10.1007/978-3-030-58610-2
isbn_softcover978-3-030-58609-6
isbn_ebook978-3-030-58610-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Computer Vision – ECCV 2020影响因子(影响力)




书目名称Computer Vision – ECCV 2020影响因子(影响力)学科排名




书目名称Computer Vision – ECCV 2020网络公开度




书目名称Computer Vision – ECCV 2020网络公开度学科排名




书目名称Computer Vision – ECCV 2020被引频次




书目名称Computer Vision – ECCV 2020被引频次学科排名




书目名称Computer Vision – ECCV 2020年度引用




书目名称Computer Vision – ECCV 2020年度引用学科排名




书目名称Computer Vision – ECCV 2020读者反馈




书目名称Computer Vision – ECCV 2020读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:20:43 | 显示全部楼层
H3DNet: 3D Object Detection Using Hybrid Geometric Primitives,
发表于 2025-3-22 04:19:52 | 显示全部楼层
Generative Low-Bitwidth Data Free Quantization,ization (GDFQ) to remove the data dependence burden. Specifically, we propose a knowledge matching generator to produce meaningful fake data by exploiting classification boundary knowledge and distribution information in the pre-trained model. With the help of generated data, we can quantize a model
发表于 2025-3-22 07:14:08 | 显示全部楼层
发表于 2025-3-22 10:58:17 | 显示全部楼层
发表于 2025-3-22 13:29:26 | 显示全部楼层
发表于 2025-3-22 17:30:59 | 显示全部楼层
发表于 2025-3-22 23:09:01 | 显示全部楼层
Thinking in Frequency: Face Forgery Detection by Mining Frequency-Aware Clues,he forgery patterns via our two-stream collaborative learning framework. We apply DCT as the applied frequency-domain transformation. Through comprehensive studies, we show that the proposed F.-Net significantly outperforms competing state-of-the-art methods on all compression qualities in the chall
发表于 2025-3-23 02:43:44 | 显示全部楼层
SeqHAND: RGB-Sequence-Based 3D Hand Pose and Shape Estimation,rent layer of the framework during domain finetuning from synthetic to real allows preservation of the visuo-temporal features learned from sequential synthetic hand images. Hand poses that are sequentially estimated consequently produce natural and smooth hand movements which lead to more robust es
发表于 2025-3-23 05:41:23 | 显示全部楼层
Rethinking the Distribution Gap of Person Re-identification with Camera-Based Batch Normalization, undervalued before due to the lack of cross-camera information, to achieve competitive ReID performance. Experiments on a wide range of ReID tasks demonstrate the effectiveness of our approach. The code is available at ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 01:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表