找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[复制链接]
查看: 18330|回复: 62
发表于 2025-3-21 16:26:48 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ECCV 2020
副标题16th European Confer
编辑Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur
描述The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic..The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.. .. .
出版日期Conference proceedings 2020
关键词artificial intelligence; color image processing; computer networks; computer vision; education; image ana
版次1
doihttps://doi.org/10.1007/978-3-030-58577-8
isbn_softcover978-3-030-58576-1
isbn_ebook978-3-030-58577-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Computer Vision – ECCV 2020影响因子(影响力)




书目名称Computer Vision – ECCV 2020影响因子(影响力)学科排名




书目名称Computer Vision – ECCV 2020网络公开度




书目名称Computer Vision – ECCV 2020网络公开度学科排名




书目名称Computer Vision – ECCV 2020被引频次




书目名称Computer Vision – ECCV 2020被引频次学科排名




书目名称Computer Vision – ECCV 2020年度引用




书目名称Computer Vision – ECCV 2020年度引用学科排名




书目名称Computer Vision – ECCV 2020读者反馈




书目名称Computer Vision – ECCV 2020读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:31:25 | 显示全部楼层
Trading Mechanisms on Financial Markets,uence. Most existing methods borrow ideas from video generation, which naively treat skeleton nodes/joints as pixels of images without considering the rich inter-frame and intra-frame structure information, leading to potential distorted actions. Graph convolutional networks (GCNs) is a promising wa
发表于 2025-3-22 02:41:27 | 显示全部楼层
Modifications of the Basic Model,cond, they use an ensemble of convolutional networks. We improve and extend both aspects. First, we systematically yield enhanced receptive fields for complementary feature extraction via coarse-to-fine decomposition of input imagery along the spatial and temporal dimensions, and adaptively focus on
发表于 2025-3-22 05:55:56 | 显示全部楼层
发表于 2025-3-22 09:24:03 | 显示全部楼层
发表于 2025-3-22 13:52:17 | 显示全部楼层
发表于 2025-3-22 20:08:32 | 显示全部楼层
Economic Policy Conference Seriesor to design special network losses, which are typically not general among different tasks and scenarios. In contrast, the existing generic methods focus on improving the feature discriminability to minimize the intra-class distance while maximizing the inter-class distance, which perform well on ea
发表于 2025-3-22 23:31:22 | 显示全部楼层
A Constitutional Cure for Deficitsgmentation methods. In this work, we propose the concept of ., which indicates the location of a certain region in the object. Based on the regional attributes, we propose a novel superpixel method called .. In the extracting stage, we design square windows with a side length of a power of two, name
发表于 2025-3-23 03:25:20 | 显示全部楼层
A Constitutional Cure for Deficitsd convolutional operation, these methods lead to oversmoothing artifacts. A deeper network structure could alleviate these problems, but at the cost of additional computational overhead. In this paper, we propose a novel spatial-adaptive denoising network (SADNet) for efficient single image blind no
发表于 2025-3-23 07:02:37 | 显示全部楼层
https://doi.org/10.1007/978-94-009-6684-0ds, we explicitly consider the physics model of the haze process in the network design and remove haze in a deep feature space. We propose an effective feature dehazing unit (FDU), which is applied to the deep feature space to explore useful features for image dehazing based on the physics model. Th
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 00:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表