找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[复制链接]
楼主: VER
发表于 2025-3-28 16:23:08 | 显示全部楼层
978-3-030-58525-9Springer Nature Switzerland AG 2020
发表于 2025-3-28 21:32:37 | 显示全部楼层
M. D. Amarasinghe,S. Balasubramaniame available as ground truths. Recently, there have been some approaches that incorporate the problem setting of non-rigid structure-from-motion (NRSfM) into deep learning to learn 3D structure reconstruction. The most important difficulty of NRSfM is to estimate both the rotation and deformation at
发表于 2025-3-29 00:09:01 | 显示全部楼层
发表于 2025-3-29 04:03:34 | 显示全部楼层
https://doi.org/10.1007/978-94-011-4102-4 high-resolution images at high frame rates, which generates bandwidth and memory issues. By capturing only changes in the brightness with a very low latency and at low data rate, event-based cameras have the ability to tackle such issues. In this paper, we present a new framework that retrieves den
发表于 2025-3-29 10:46:20 | 显示全部楼层
https://doi.org/10.1007/978-94-011-4102-4cess of higher-order assignment methods, has sparked an interest in the search for improved higher-order matching algorithms on warped images due to projection. Although, currently, several existing methods “flatten” such 3D images to use planar graph/hypergraph matching methods, they still suffer f
发表于 2025-3-29 15:25:24 | 显示全部楼层
发表于 2025-3-29 16:53:13 | 显示全部楼层
I. Pavlik,J.O. Falkinham III,J. Kazdabject detection, we introduce a single-stage and multi-scale framework to learn a unified representation for objects within different distance ranges, termed as UR3D. UR3D formulates different tasks of detection by exploiting the scale information, to reduce model capacity requirement and achieve ac
发表于 2025-3-29 21:41:49 | 显示全部楼层
https://doi.org/10.1007/978-3-030-72854-0versity of scene texts in scale, orientation, shape and aspect ratio, as well as the inherent limitation of convolutional neural network for geometric transformations, to achieve accurate scene text detection is still an open problem. In this paper, we propose a novel sequential deformation method t
发表于 2025-3-30 03:13:15 | 显示全部楼层
发表于 2025-3-30 04:51:22 | 显示全部楼层
Micael Jonsson,Ryan A. Sponselleroped recently. In this work, we augment such supervised segmentation models by allowing them to learn from unlabeled data. Our semi-supervised approach, termed Error-Correcting Supervision, leverages a collaborative strategy. Apart from the supervised training on the labeled data, the segmentation n
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 13:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表