找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[复制链接]
查看: 45230|回复: 59
发表于 2025-3-21 19:12:58 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ECCV 2018
副标题15th European Confer
编辑Vittorio Ferrari,Martial Hebert,Yair Weiss
视频videohttp://file.papertrans.cn/235/234195/234195.mp4
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw
描述The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018..The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions..
出版日期Conference proceedings 2018
关键词computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; imag
版次1
doihttps://doi.org/10.1007/978-3-030-01234-2
isbn_softcover978-3-030-01233-5
isbn_ebook978-3-030-01234-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

书目名称Computer Vision – ECCV 2018影响因子(影响力)




书目名称Computer Vision – ECCV 2018影响因子(影响力)学科排名




书目名称Computer Vision – ECCV 2018网络公开度




书目名称Computer Vision – ECCV 2018网络公开度学科排名




书目名称Computer Vision – ECCV 2018被引频次




书目名称Computer Vision – ECCV 2018被引频次学科排名




书目名称Computer Vision – ECCV 2018年度引用




书目名称Computer Vision – ECCV 2018年度引用学科排名




书目名称Computer Vision – ECCV 2018读者反馈




书目名称Computer Vision – ECCV 2018读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:29:48 | 显示全部楼层
Donor Selection for Adults and Pediatricsever, is highly challenging due to factors such as variation in human bodies, clothing and viewpoint. Prior methods addressing this problem typically attempt to fit parametric body models with certain priors on pose and shape. In this work we argue for an alternative representation and propose BodyN
发表于 2025-3-22 02:26:10 | 显示全部楼层
发表于 2025-3-22 04:34:32 | 显示全部楼层
Emma C. Morris,J. H. F. (Fred) Falkenburgocess, and, in many applications, the need for this reasoning process to be . to assist users in both development and prediction. Existing models designed to produce interpretable traces of their decision-making process typically require these traces to be supervised at training time. In this paper,
发表于 2025-3-22 09:54:44 | 显示全部楼层
发表于 2025-3-22 15:46:36 | 显示全部楼层
Franck Morschhauser,Pier Luigi Zinzanis explored for more advanced video processing. In this paper, we propose a learnable unified framework for propagating a variety of visual properties of video images, including but not limited to color, high dynamic range (HDR), and segmentation mask, where the properties are available for only a fe
发表于 2025-3-22 18:49:20 | 显示全部楼层
Differential Diagnosis of Pathologic Q waves3D shape as a set of locality-preserving 1D ordered list of points at multiple resolutions. This allows efficient feed-forward processing through 1D convolutions, coarse-to-fine analysis through a multi-grid architecture, and it leads to faster convergence and small memory footprint during training.
发表于 2025-3-22 23:39:25 | 显示全部楼层
Acute and Chronic Pericarditis,ncorporates the body part based structural connectivity of joints to learn the high spatial correlation of human posture on our method. Towards this goal, we propose a new long short-term memory (LSTM)-based deep learning architecture named propagating LSTM networks (p-LSTMs), where each LSTM is con
发表于 2025-3-23 04:03:27 | 显示全部楼层
发表于 2025-3-23 05:54:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 10:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表