找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[复制链接]
楼主: 归纳
发表于 2025-3-27 00:51:34 | 显示全部楼层
发表于 2025-3-27 02:41:39 | 显示全部楼层
发表于 2025-3-27 05:48:52 | 显示全部楼层
https://doi.org/10.1007/978-3-031-21952-8 long series of inane queries that add little value. We evaluate our model on the GuessWhat?! dataset and show that the resulting questions can help a standard ‘Guesser’ identify a specific object in an image at a much higher success rate.
发表于 2025-3-27 09:26:23 | 显示全部楼层
The EBMT: History, Present, and Futureieving higher performance with comparable parameter sizes. Second, 2D states preserve spatial locality. Taking advantage of this, we . reveal the internal dynamics in the process of caption generation, as well as the connections between input visual domain and output linguistic domain.
发表于 2025-3-27 14:31:23 | 显示全部楼层
发表于 2025-3-27 18:15:12 | 显示全部楼层
Recycle-GAN: Unsupervised Video Retargetinghen demonstrate the proposed approach for the problems where information in both space and time matters such as face-to-face translation, flower-to-flower, wind and cloud synthesis, sunrise and sunset.
发表于 2025-3-27 22:16:07 | 显示全部楼层
发表于 2025-3-28 05:50:40 | 显示全部楼层
Rethinking the Form of Latent States in Image Captioningieving higher performance with comparable parameter sizes. Second, 2D states preserve spatial locality. Taking advantage of this, we . reveal the internal dynamics in the process of caption generation, as well as the connections between input visual domain and output linguistic domain.
发表于 2025-3-28 06:54:25 | 显示全部楼层
发表于 2025-3-28 13:35:49 | 显示全部楼层
MT-VAE: Learning Motion Transformations to Generate Multimodal Human Dynamicsn mode. Our model is able to generate multiple diverse and plausible motion sequences in the future from the same input. We apply our approach to both facial and full body motion, and demonstrate applications like analogy-based motion transfer and video synthesis.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 05:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表