找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[复制链接]
查看: 55072|回复: 61
发表于 2025-3-21 16:29:36 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ECCV 2018
副标题15th European Confer
编辑Vittorio Ferrari,Martial Hebert,Yair Weiss
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw
描述The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018..The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions..
出版日期Conference proceedings 2018
关键词action recognition; artificial intelligence; estimation; image classification; image coding; image proces
版次1
doihttps://doi.org/10.1007/978-3-030-01231-1
isbn_softcover978-3-030-01230-4
isbn_ebook978-3-030-01231-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

书目名称Computer Vision – ECCV 2018影响因子(影响力)




书目名称Computer Vision – ECCV 2018影响因子(影响力)学科排名




书目名称Computer Vision – ECCV 2018网络公开度




书目名称Computer Vision – ECCV 2018网络公开度学科排名




书目名称Computer Vision – ECCV 2018被引频次




书目名称Computer Vision – ECCV 2018被引频次学科排名




书目名称Computer Vision – ECCV 2018年度引用




书目名称Computer Vision – ECCV 2018年度引用学科排名




书目名称Computer Vision – ECCV 2018读者反馈




书目名称Computer Vision – ECCV 2018读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:08:59 | 显示全部楼层
发表于 2025-3-22 02:33:04 | 显示全部楼层
Three Levels of Inductive Inference,ic properties of visual and textual information, existing works usually deal with this task by directly feeding a foreground/background classifier with cascaded image and text features, which are extracted from each image region and the whole query, respectively. On the one hand, they ignore that ea
发表于 2025-3-22 06:47:56 | 显示全部楼层
Three Levels of Inductive Inference, The deep neural network models provide the stronger representation ability and faster reconstruction compared with “shallow” optimization-based methods. However, in the existing deep-based CS-MRI models, the high-level semantic supervision information from massive segmentation-labels in MRI dataset
发表于 2025-3-22 10:01:29 | 显示全部楼层
发表于 2025-3-22 13:14:14 | 显示全部楼层
,The Nature of Man — Games That Genes Play?,challenging to capture them. In this paper, we propose a learning based algorithm to reconstruct a densely-sampled LF fast and accurately from a sparsely-sampled LF in one forward pass. Our method uses computationally efficient convolutions to deeply characterize the high dimensional spatial-angular
发表于 2025-3-22 20:26:32 | 显示全部楼层
https://doi.org/10.1007/1-4020-3399-0eassembling one or several possibly incomplete images. The main contributions of this work are: (1) several deep neural architectures to predict the relative position of image fragments that outperform the previous state of the art; (2) casting the reassembly problem into the shortest path in a grap
发表于 2025-3-22 23:37:47 | 显示全部楼层
发表于 2025-3-23 04:27:15 | 显示全部楼层
Rights, Games and Social Choice,lution images which are artificially generated by simple bilinear down-sampling (or in a few cases by blurring followed by down-sampling). We show that such methods fail to produce good results when applied to real-world low-resolution, low quality images. To circumvent this problem, we propose a tw
发表于 2025-3-23 06:39:38 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 11:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表