找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[复制链接]
查看: 33303|回复: 56
发表于 2025-3-21 17:25:07 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ECCV 2018
副标题15th European Confer
编辑Vittorio Ferrari,Martial Hebert,Yair Weiss
视频videohttp://file.papertrans.cn/235/234190/234190.mp4
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw
描述The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018..The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions..
出版日期Conference proceedings 2018
关键词3D; artificial intelligence; image processing; image reconstruction; image segmentation; imaging systems;
版次1
doihttps://doi.org/10.1007/978-3-030-01219-9
isbn_softcover978-3-030-01218-2
isbn_ebook978-3-030-01219-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

书目名称Computer Vision – ECCV 2018影响因子(影响力)




书目名称Computer Vision – ECCV 2018影响因子(影响力)学科排名




书目名称Computer Vision – ECCV 2018网络公开度




书目名称Computer Vision – ECCV 2018网络公开度学科排名




书目名称Computer Vision – ECCV 2018被引频次




书目名称Computer Vision – ECCV 2018被引频次学科排名




书目名称Computer Vision – ECCV 2018年度引用




书目名称Computer Vision – ECCV 2018年度引用学科排名




书目名称Computer Vision – ECCV 2018读者反馈




书目名称Computer Vision – ECCV 2018读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:19:13 | 显示全部楼层
Programmable Triangulation Light Curtainsstead, it needs to only monitor if any object comes within its near proximity which is an easier task than full depth scanning. We introduce a novel device that monitors the presence of objects on a virtual shell near the device, which we refer to as a light curtain. Light curtains offer a light-wei
发表于 2025-3-22 01:04:23 | 显示全部楼层
发表于 2025-3-22 07:19:51 | 显示全部楼层
发表于 2025-3-22 09:11:47 | 显示全部楼层
Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone Imageby a handheld mobile phone camera. Our method images the surface under arbitrary environment lighting with the flash turned on, thereby avoiding shadows while simultaneously capturing high-frequency specular highlights. We train a CNN to regress an SVBRDF and surface normals from this image. Our net
发表于 2025-3-22 12:57:07 | 显示全部楼层
Video Object Segmentation with Joint Re-identification and Attention-Aware Mask Propagatione and pose variations, the problem is compounded when instances occlude each other causing failures in tracking. In this study, we formulate a deep recurrent network that is capable of segmenting and tracking objects in video simultaneously by their temporal continuity, yet able to re-identify them
发表于 2025-3-22 20:39:56 | 显示全部楼层
Spatio-Temporal Transformer Network for Video Restorationly consider only a pair of consecutive frames and hence are not capable of capturing long-range temporal dependencies and fall short of establishing correspondences across several timesteps. To alleviate these problems, we propose a novel Spatio-temporal Transformer Network (STTN) which handles mult
发表于 2025-3-23 00:07:34 | 显示全部楼层
发表于 2025-3-23 04:08:01 | 显示全部楼层
发表于 2025-3-23 07:30:41 | 显示全部楼层
Multi-view to Novel View: Synthesizing Novel Views With Self-learned Confidence pose from given source images. We propose an end-to-end trainable framework that learns to exploit multiple viewpoints to synthesize a novel view without any 3D supervision. Specifically, our model consists of a flow prediction module and a pixel generation module to directly leverage information p
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 04:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表