找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2016; 14th European Confer Bastian Leibe,Jiri Matas,Max Welling Conference proceedings 2016 Springer International P

[复制链接]
楼主: 中产阶级
发表于 2025-3-26 23:55:38 | 显示全部楼层
发表于 2025-3-27 03:07:00 | 显示全部楼层
Spatio-Temporally Consistent Correspondence for Dense Dynamic Scene Modelingcal image sequences. The obtained results for these two problems on multiple publicly available dynamic reconstruction datasets illustrate both the effectiveness and generality of our proposed approach.
发表于 2025-3-27 05:50:23 | 显示全部楼层
发表于 2025-3-27 12:19:17 | 显示全部楼层
Visualizing Image Priors to study various popular image models, and reveal interesting behaviors, which were not noticed in the past. We confirm our findings through denoising experiments. These validate that the structures we reveal as ‘optimal’ for a specific prior are indeed better denoised by this prior.
发表于 2025-3-27 16:02:55 | 显示全部楼层
发表于 2025-3-27 18:16:17 | 显示全部楼层
发表于 2025-3-27 23:58:13 | 显示全部楼层
Deep Learning 3D Shape Surfaces Using Geometry Imagescut to convert the original 3D shape into a flat and regular geometry image. We propose a way to implicitly learn the topology and structure of 3D shapes using geometry images encoded with suitable features. We show the efficacy of our approach to learn 3D shape surfaces for classification and retrieval tasks on non-rigid and rigid shape datasets.
发表于 2025-3-28 02:30:51 | 显示全部楼层
发表于 2025-3-28 07:27:15 | 显示全部楼层
Learning Semantic Deformation Flows with 3D Convolutional Networksdetail information. Our experiments show that the CNN approach achieves comparable results with state of the art methods when applied to CAD models. When applied to single frame depth scans, and partial/noisy CAD models we achieve . less error compared to the state-of-the-art.
发表于 2025-3-28 12:30:38 | 显示全部楼层
Conference proceedings 2016eo: events, activities and surveillance; applications. They are organized in topical sections on detection, recognition and retrieval; scene understanding; optimization; image and video processing; learning; action, activity and tracking; 3D; and 9 poster sessions..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-9 06:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表