找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision -- ECCV 2014; 13th European Confer David Fleet,Tomas Pajdla,Tinne Tuytelaars Conference proceedings 2014 Springer Internati

[复制链接]
查看: 49301|回复: 61
发表于 2025-3-21 17:31:37 | 显示全部楼层 |阅读模式
书目名称Computer Vision -- ECCV 2014
副标题13th European Confer
编辑David Fleet,Tomas Pajdla,Tinne Tuytelaars
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision -- ECCV 2014; 13th European Confer David Fleet,Tomas Pajdla,Tinne Tuytelaars Conference proceedings 2014 Springer Internati
描述The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014..The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The papers are organized in topical sections on tracking and activity recognition; recognition; learning and inference; structure from motion and feature matching; computational photography and low-level vision; vision; segmentation and saliency; context and 3D scenes; motion and 3D scene analysis; and poster sessions.
出版日期Conference proceedings 2014
关键词3D; activity recognition and understanding; artificial intelligence; computational photography; computer
版次1
doihttps://doi.org/10.1007/978-3-319-10593-2
isbn_softcover978-3-319-10592-5
isbn_ebook978-3-319-10593-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

书目名称Computer Vision -- ECCV 2014影响因子(影响力)




书目名称Computer Vision -- ECCV 2014影响因子(影响力)学科排名




书目名称Computer Vision -- ECCV 2014网络公开度




书目名称Computer Vision -- ECCV 2014网络公开度学科排名




书目名称Computer Vision -- ECCV 2014被引频次




书目名称Computer Vision -- ECCV 2014被引频次学科排名




书目名称Computer Vision -- ECCV 2014年度引用




书目名称Computer Vision -- ECCV 2014年度引用学科排名




书目名称Computer Vision -- ECCV 2014读者反馈




书目名称Computer Vision -- ECCV 2014读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:41:02 | 显示全部楼层
Loss and Care: Asian Australian Documentarypre-completion and outliers removal, etc. Experiments demonstrate that our approach achieves state-of-the-art performance for the noisy image completion problem in terms of both PSNR and subjective visual quality.
发表于 2025-3-22 02:56:04 | 显示全部楼层
发表于 2025-3-22 07:28:21 | 显示全部楼层
发表于 2025-3-22 10:41:56 | 显示全部楼层
发表于 2025-3-22 16:50:00 | 显示全部楼层
The Dogaressa of Venice, 1200-1500ian face method with the learned face prior can handle the complex intra-personal variations such as large poses and large occlusions. Experiments on the challenging LFW benchmark shows that our algorithm outperforms most of the state-of-art methods.
发表于 2025-3-22 21:03:38 | 显示全部楼层
发表于 2025-3-23 00:02:02 | 显示全部楼层
The Base and the Superstructure of Societybases have demonstrated that the FDM outperforms the state-of-the-art methods for facial expression analysis. More importantly, the FDM achieves an impressive performance in a cross-database validation, which demonstrates the generalization capability of the selected features.
发表于 2025-3-23 02:42:15 | 显示全部楼层
,Two Tiers — and a Black Market,equency details from example scenes. Combining these two key strategies we can qualitatively and quantitatively outperform leading generic non-blind deconvolution methods when context-appropriate example images are available. We also compare to recent work which, like ours, tries to make use of cont
发表于 2025-3-23 08:38:24 | 显示全部楼层
Schwarps: Locally Projective Image Warps Based on 2D Schwarzian DerivativesD functions using differential properties of homographies. We name as Schwarp a warp which is estimated by penalizing the residual of Schwarzian equations. Experimental evaluation shows that Schwarps outperform existing warps in modeling and extrapolation power, and lead to far better results in Sha
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 04:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表