找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2012; 12th European Confer Andrew Fitzgibbon,Svetlana Lazebnik,Cordelia Schmi Conference proceedings 2012 Springer-V

[复制链接]
楼主: 存货清单
发表于 2025-3-25 06:18:36 | 显示全部楼层
发表于 2025-3-25 08:12:17 | 显示全部楼层
发表于 2025-3-25 15:10:19 | 显示全部楼层
The Discovery of the Artificial viewpoint on the role of V1-inspired features allows us to answer fundamental questions on the uniqueness and redundancies of these features, and offer substantial improvements in terms of computational and storage efficiency.
发表于 2025-3-25 16:05:38 | 显示全部楼层
The Disentanglement of Populationsuctured SVM paradigm to learn optimal parameters and show some practical techniques to overcome huge computation requirements. We evaluate our model on the problems of image denoising and semantic segmentation.
发表于 2025-3-25 23:43:51 | 显示全部楼层
发表于 2025-3-26 02:39:31 | 显示全部楼层
Object-Centric Spatial Pooling for Image Classificationbels, or so-called weak labels. We validate our approach on the challenging PASCAL07 dataset. Our learned detectors are comparable in accuracy with state-of-the-art weakly supervised detection methods. More importantly, the resulting OCP approach significantly outperforms SPM-based pooling in image classification.
发表于 2025-3-26 06:54:28 | 显示全部楼层
V1-Inspired Features Induce a Weighted Margin in SVMs viewpoint on the role of V1-inspired features allows us to answer fundamental questions on the uniqueness and redundancies of these features, and offer substantial improvements in terms of computational and storage efficiency.
发表于 2025-3-26 11:15:18 | 显示全部楼层
发表于 2025-3-26 15:31:28 | 显示全部楼层
Robust Point Matching Revisited: A Concave Optimization Approachon, and does not need regularization for simple transformations such as similarity transform. Experiments on synthetic and real data validate the advantages of our method in comparison with state-of-the-art methods.
发表于 2025-3-26 20:12:08 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 22:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表