找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision - ECCV 2008; 10th European Confer David Forsyth,Philip Torr,Andrew Zisserman Conference proceedings 2008 Springer-Verlag Be

[复制链接]
楼主: Stubborn
发表于 2025-3-25 05:32:32 | 显示全部楼层
Yingxin Li,Fukang Liu,Gaoli WangILSS. We show highly competitive object categorization results on the Caltech dataset. To evaluate the performance of our algorithm further, we introduce the challenging Landmarks-18 dataset, a collection of photographs of famous landmarks from around the world. The results on this new dataset show the great potential of our proposed algorithm.
发表于 2025-3-25 11:31:22 | 显示全部楼层
发表于 2025-3-25 13:29:07 | 显示全部楼层
发表于 2025-3-25 17:57:02 | 显示全部楼层
发表于 2025-3-25 23:30:33 | 显示全部楼层
Keypoint Signatures for Fast Learning and Recognition fact that if we train a Randomized Tree classifier to recognize a number of keypoints extracted from an image database, all other keypoints can be characterized in terms of their response to these classification trees. This signature is fast to compute and has a discriminative power that is comparable to that of the much slower SIFT descriptor.
发表于 2025-3-26 00:27:05 | 显示全部楼层
发表于 2025-3-26 08:16:03 | 显示全部楼层
Scale Invariant Action Recognition Using Compound Features Mined from Dense Spatio-temporal Cornersuperior performance to other state-of-the-art approaches (including those based upon sparse feature detectors). Furthermore, the approach requires only weak supervision in the form of class labels for each training sequence. No ground truth position or temporal alignment is required during training.
发表于 2025-3-26 10:09:37 | 显示全部楼层
Semi-supervised On-Line Boosting for Robust Tracking given prior and an on-line classifier. This comes without any parameter tuning. In the experiments, we demonstrate real-time tracking of our SemiBoost tracker on several challenging test sequences where our tracker outperforms other on-line tracking methods.
发表于 2025-3-26 14:53:21 | 显示全部楼层
发表于 2025-3-26 20:46:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 18:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表