找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ACCV 2020 Workshops; 15th Asian Conferenc Imari Sato,Bohyung Han Conference proceedings 2021 Springer Nature Switzerland

[复制链接]
查看: 19915|回复: 51
发表于 2025-3-21 16:21:26 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ACCV 2020 Workshops
副标题15th Asian Conferenc
编辑Imari Sato,Bohyung Han
视频videohttp://file.papertrans.cn/235/234133/234133.mp4
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ACCV 2020 Workshops; 15th Asian Conferenc Imari Sato,Bohyung Han Conference proceedings 2021 Springer Nature Switzerland
描述This book constitutes the refereed post-conference proceedings of four workshops held at the 15th Asian Conference on Computer Vision, ACCV 2020, which was held in Kyoto, Japan, in November/ December 2020.*.The 13 papers were carefully reviewed and selected from the following two workshops: Machine Learning and Computing for Visual Semantic Analysis (MLCSA) and Multi-Visual-Modality Human Activity Understanding (MMHAU)..*The conference and workshops were held virtually..
出版日期Conference proceedings 2021
关键词artificial intelligence; computer vision; deep learning; image analysis; image processing; image quality;
版次1
doihttps://doi.org/10.1007/978-3-030-69756-3
isbn_softcover978-3-030-69755-6
isbn_ebook978-3-030-69756-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

书目名称Computer Vision – ACCV 2020 Workshops影响因子(影响力)




书目名称Computer Vision – ACCV 2020 Workshops影响因子(影响力)学科排名




书目名称Computer Vision – ACCV 2020 Workshops网络公开度




书目名称Computer Vision – ACCV 2020 Workshops网络公开度学科排名




书目名称Computer Vision – ACCV 2020 Workshops被引频次




书目名称Computer Vision – ACCV 2020 Workshops被引频次学科排名




书目名称Computer Vision – ACCV 2020 Workshops年度引用




书目名称Computer Vision – ACCV 2020 Workshops年度引用学科排名




书目名称Computer Vision – ACCV 2020 Workshops读者反馈




书目名称Computer Vision – ACCV 2020 Workshops读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:35:30 | 显示全部楼层
Unsupervised Multispectral and Hyperspectral Image Fusion with Deep Spatial and Spectral Priorsailed spectral distribution helping for numerous applications. However, existing HS imaging sensor can only obtain images with low spatial resolution. Thus fusing a low resolution hyperspectral (LR-HS) image with a high resolution (HR) RGB (or multispectral) image into a HR-HS image has received muc
发表于 2025-3-22 00:37:18 | 显示全部楼层
发表于 2025-3-22 08:13:51 | 显示全部楼层
Cell Detection and Segmentation in Microscopy Images with Improved Mask R-CNNclinical practice, and automation of this task to develop computer aided system based on image processing and machine learning technique has been rapidly evolved for providing quantitative evaluation and mitigating burden and time of the biological experts. Automated cell/nuclei detection and segmen
发表于 2025-3-22 11:08:19 | 显示全部楼层
发表于 2025-3-22 13:43:08 | 显示全部楼层
发表于 2025-3-22 18:42:45 | 显示全部楼层
发表于 2025-3-23 01:10:18 | 显示全部楼层
发表于 2025-3-23 02:33:17 | 显示全部楼层
Multiview Similarity Learning for Robust Visual Clusteringesents encouraging performance on lots of applications. Nevertheless, the recent existing multiview similarity learning methods have two main drawbacks. On one hand, the comprehensive consensus similarity is learned based on previous fixed graphs learned from all views separately, which ignores the
发表于 2025-3-23 08:37:30 | 显示全部楼层
Real-Time Spatio-Temporal Action Localization via Learning Motion Representationination of optical flow and RGB significantly improves the performance, optical flow estimation brings a large amount of computational cost and the whole network is not end-to-end trainable. These shortcomings hinder the interactive fusion between motion information and RGB information, and greatly
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 07:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表