找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ACCV 2020; 15th Asian Conferenc Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi Conference proceedings 2021 Springer Nature Swi

[复制链接]
查看: 25016|回复: 57
发表于 2025-3-21 18:53:51 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ACCV 2020
副标题15th Asian Conferenc
编辑Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi
视频videohttp://file.papertrans.cn/235/234132/234132.mp4
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ACCV 2020; 15th Asian Conferenc Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi Conference proceedings 2021 Springer Nature Swi
描述The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.*.The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics:..Part I: 3D computer vision; segmentation and grouping..Part II: low-level vision, image processing; motion and tracking..Part III: recognition and detection; optimization, statistical methods, and learning; robot vision.Part IV: deep learning for computer vision, generative models for computer vision..Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis..Part VI: applications of computer vision; vision for X; datasets and performance analysis..*The conference was held virtually..
出版日期Conference proceedings 2021
关键词artificial intelligence; biomedical image analysis; computer networks; computer vision; databases; image
版次1
doihttps://doi.org/10.1007/978-3-030-69544-6
isbn_softcover978-3-030-69543-9
isbn_ebook978-3-030-69544-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

书目名称Computer Vision – ACCV 2020影响因子(影响力)




书目名称Computer Vision – ACCV 2020影响因子(影响力)学科排名




书目名称Computer Vision – ACCV 2020网络公开度




书目名称Computer Vision – ACCV 2020网络公开度学科排名




书目名称Computer Vision – ACCV 2020被引频次




书目名称Computer Vision – ACCV 2020被引频次学科排名




书目名称Computer Vision – ACCV 2020年度引用




书目名称Computer Vision – ACCV 2020年度引用学科排名




书目名称Computer Vision – ACCV 2020读者反馈




书目名称Computer Vision – ACCV 2020读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:51:33 | 显示全部楼层
Günther Schuh,Patrick Wegehauptnce, EdgeCRF based on patches extracted from colour edges works effectively only when the presence of noise is insignificant, which is not the case for many real images; and, CRFNet, a recent method based on fully supervised deep learning works only for the CRFs that are in the training data, and he
发表于 2025-3-22 01:07:13 | 显示全部楼层
发表于 2025-3-22 08:13:33 | 显示全部楼层
https://doi.org/10.1007/978-3-642-17032-4 work, we explore learning from abundant, randomly generated synthetic data, together with unlabeled or partially labeled target domain data, instead. Randomly generated synthetic data has the advantage of controlled variability in the lane geometry and lighting, but it is limited in terms of photo-
发表于 2025-3-22 09:02:41 | 显示全部楼层
发表于 2025-3-22 13:49:45 | 显示全部楼层
https://doi.org/10.1007/978-3-658-45553-8ims. Despite the effort of many companies requiring their own mobile applications to capture images for online transactions, it is difficult to restrict users from taking a picture of other’s images displayed on a screen. To detect such cases, we propose a novel approach using paired images with dif
发表于 2025-3-22 19:31:33 | 显示全部楼层
https://doi.org/10.1007/978-3-658-45553-8t via e.g. blurring, adding noise, or graying out, which often produce unrealistic, out-of-samples. Instead, we propose to integrate a generative inpainter into three representative attribution methods to remove an input feature. Our proposed change improved all three methods in (1) generating more
发表于 2025-3-23 00:34:44 | 显示全部楼层
FinTech and Financial Inclusion,r sound modalities contribute to the result, i.e. do we need both image and sound for sound source localization? To address this question, we develop an unsupervised learning system that solves sound source localization by decomposing this task into two steps: (i) “potential sound source localizatio
发表于 2025-3-23 04:38:11 | 显示全部楼层
发表于 2025-3-23 07:23:49 | 显示全部楼层
https://doi.org/10.1007/978-3-031-24563-3nd 3D model-based methods proposed recently have their benefits and limitations. Whereas 3D model-based methods provide realistic deformations of the clothing, it needs a difficult 3D model construction process and cannot handle the non-clothing areas well. Image-based deep neural network methods ar
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-23 17:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表