找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ACCV 2020; 15th Asian Conferenc Hiroshi Ishikawa,Cheng-Lin Liu,Jianbo Shi Conference proceedings 2021 Springer Nature Swi

[复制链接]
楼主: 太平间
发表于 2025-3-30 12:00:33 | 显示全部楼层
https://doi.org/10.1007/978-3-319-26047-1ly to improve their performance by simply increasing the depth of their network. Although this strategy can get promising results, it is inefficient in many real-world scenarios because of the high computational cost. In this paper, we propose an efficient group feature fusion residual network (GFFR
发表于 2025-3-30 13:26:31 | 显示全部楼层
发表于 2025-3-30 17:52:28 | 显示全部楼层
发表于 2025-3-30 22:49:05 | 显示全部楼层
https://doi.org/10.1007/978-3-662-65102-5their practical applicability. In this paper, we develop a computation efficient yet accurate network based on the proposed attentive auxiliary features (A.F) for SISR. Firstly, to explore the features from the bottom layers, the auxiliary feature from all the previous layers are projected into a co
发表于 2025-3-31 04:44:56 | 显示全部楼层
Integrating the Engine in the Vehicle,he investigation on rain removal has thus been attracting, while the performances of existing deraining have limitations owing to over smoothing effect, poor generalization capability and rain intensity varies both in spatial locations and color channels. To address these issues, we proposed a Multi
发表于 2025-3-31 05:40:50 | 显示全部楼层
Computer Vision – ACCV 2020978-3-030-69532-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-31 12:16:31 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/c/image/234127.jpg
发表于 2025-3-31 15:04:58 | 显示全部楼层
Second-Order Camera-Aware Color Transformation for Cross-Domain Person Re-identification all the views of both source and target domain data with original ImageNet data statistics. This new input normalization method, as shown in our experiments, is much more efficient than simply using ImageNet statistics. We test our method on Market1501, DukeMTMC, and MSMT17 and achieve leading perf
发表于 2025-3-31 18:16:18 | 显示全部楼层
MCGKT-Net: Multi-level Context Gating Knowledge Transfer Network for Single Image Derainingg the knowledge already learned in other task domains. Furthermore, to dynamically select useful features in learning procedure, we propose a multi-scale context gating module in the MCGKT-Net using squeeze-and-excitation block. Experiments on three benchmark datasets: Rain100H, Rain100L, and Rain80
发表于 2025-3-31 23:17:14 | 显示全部楼层
Degradation Model Learning for Real-World Single Image Super-Resolutionradation kernel as the weighted combination of the basis kernels. With the learned degradation model, a large number of realistic HR-LR pairs can be easily generated to train a more robust SISR model. Extensive experiments are performed to quantitatively and qualitatively validate the proposed degra
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 07:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表