找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ACCV 2018 Workshops; 14th Asian Conferenc Gustavo Carneiro,Shaodi You Conference proceedings 2019 Springer Nature Switzer

[复制链接]
查看: 31107|回复: 59
发表于 2025-3-21 19:39:15 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ACCV 2018 Workshops
副标题14th Asian Conferenc
编辑Gustavo Carneiro,Shaodi You
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ACCV 2018 Workshops; 14th Asian Conferenc Gustavo Carneiro,Shaodi You Conference proceedings 2019 Springer Nature Switzer
描述This LNCS workshop proceedings, ACCV 2018, contains carefully reviewed and selected papers from 11 workshops, each having different types or programs: Scene Understanding and Modelling (SUMO) Challenge, Learning and Inference Methods for High Performance Imaging (LIMHPI), Attention/Intention Understanding (AIU), Museum Exhibit Identification Challenge (Open MIC) for Domain Adaptation and Few-Shot Learning, RGB-D - Sensing and Understanding via Combined Colour and Depth, Dense 3D Reconstruction for Dynamic Scenes, AI Aesthetics in Art and Media (AIAM), Robust Reading (IWRR), Artificial Intelligence for Retinal Image Analysis (AIRIA), Combining Vision and Language, Advanced Machine Vision for Real-life and Industrially Relevant Applications (AMV).
出版日期Conference proceedings 2019
关键词artificial intelligence; character recognition; computer architecture; computer vision; data security; es
版次1
doihttps://doi.org/10.1007/978-3-030-21074-8
isbn_softcover978-3-030-21073-1
isbn_ebook978-3-030-21074-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Computer Vision – ACCV 2018 Workshops影响因子(影响力)




书目名称Computer Vision – ACCV 2018 Workshops影响因子(影响力)学科排名




书目名称Computer Vision – ACCV 2018 Workshops网络公开度




书目名称Computer Vision – ACCV 2018 Workshops网络公开度学科排名




书目名称Computer Vision – ACCV 2018 Workshops被引频次




书目名称Computer Vision – ACCV 2018 Workshops被引频次学科排名




书目名称Computer Vision – ACCV 2018 Workshops年度引用




书目名称Computer Vision – ACCV 2018 Workshops年度引用学科排名




书目名称Computer Vision – ACCV 2018 Workshops读者反馈




书目名称Computer Vision – ACCV 2018 Workshops读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:10:43 | 显示全部楼层
Tatiana V. Nikulina,J. Patrick Kociolekdifficult to estimate the gaze of each person in a crowd accurately and simultaneously with existing image-based eye tracking methods, since the image resolution of each person becomes low when we capture the whole crowd with a distant camera. Therefore, we introduce a new approach for localizing th
发表于 2025-3-22 03:18:10 | 显示全部楼层
发表于 2025-3-22 06:51:48 | 显示全部楼层
发表于 2025-3-22 11:04:06 | 显示全部楼层
发表于 2025-3-22 13:46:07 | 显示全部楼层
https://doi.org/10.1007/978-1-4684-0409-8eatures for recognition are appeared in the partial regions of human, thus we segment a video frame into spatial regions based on the human body parts to enhance feature representation. We utilize an object detector and a pose estimator to segment four regions, namely full body, left/right arm, and
发表于 2025-3-22 19:57:43 | 显示全部楼层
发表于 2025-3-22 22:54:58 | 显示全部楼层
https://doi.org/10.1007/978-1-349-03555-7sformation. Above all, a method called Style Transfer is drawing much attention which can integrate two photos into one integrated photo regarding their content and style. Although many extended works including Fast Style Transfer have been proposed so far, all the extended methods including origina
发表于 2025-3-23 03:17:54 | 显示全部楼层
发表于 2025-3-23 09:05:34 | 显示全部楼层
https://doi.org/10.1007/978-1-349-03555-7techniques for visual recognition have encouraged new possibilities for computing aesthetics and other related concepts in images. In this paper, we design an approach for recognizing styles in photographs by introducing adapted deep convolutional neural networks that are attentive towards strong ne
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 21:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表