找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C. V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Sw

[复制链接]
查看: 41825|回复: 60
发表于 2025-3-21 17:29:21 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ACCV 2018
副标题14th Asian Conferenc
编辑C. V. Jawahar,Hongdong Li,Konrad Schindler
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C. V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Sw
描述.The six volume set LNCS 11361-11366 constitutes the proceedings of the 14.th. Asian Conference on Computer Vision, ACCV 2018, held in Perth, Australia, in December 2018. The total of 274 contributions was carefully reviewed and selected from 979 submissions during two rounds of reviewing and improvement. The papers focus on motion and tracking, segmentation and grouping, image-based modeling, dep learning, object recognition object recognition, object detection and categorization, vision and language, video analysis and event recognition, face and gesture analysis, statistical methods and learning, performance evaluation, medical image analysis, document analysis, optimization methods, RGBD and depth camera processing, robotic vision, applications of computer vision..
出版日期Conference proceedings 2019
关键词artificial intelligence; computer vision; estimation; image coding; image processing; image reconstructio
版次1
doihttps://doi.org/10.1007/978-3-030-20893-6
isbn_softcover978-3-030-20892-9
isbn_ebook978-3-030-20893-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Computer Vision – ACCV 2018影响因子(影响力)




书目名称Computer Vision – ACCV 2018影响因子(影响力)学科排名




书目名称Computer Vision – ACCV 2018网络公开度




书目名称Computer Vision – ACCV 2018网络公开度学科排名




书目名称Computer Vision – ACCV 2018被引频次




书目名称Computer Vision – ACCV 2018被引频次学科排名




书目名称Computer Vision – ACCV 2018年度引用




书目名称Computer Vision – ACCV 2018年度引用学科排名




书目名称Computer Vision – ACCV 2018读者反馈




书目名称Computer Vision – ACCV 2018读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:56:19 | 显示全部楼层
Zero-Shot Facial Expression Recognition with Multi-label Label Propagationmotional classes to describe the varied and nuancing meaning conveyed by facial expression. However, it is almost impossible to enumerate all the emotional categories and collect adequate annotated samples for each category. To this end, we propose a zero-shot learning framework with multi-label lab
发表于 2025-3-22 03:53:11 | 显示全部楼层
发表于 2025-3-22 05:01:44 | 显示全部楼层
COSONet: Compact Second-Order Network for Video Face Recognitionpose, and also suffer from video-type noises such as motion blur, out-of-focus blur and low resolution. To tackle these two types of challenges, we propose an extensive framework which contains three aspects: neural network design, training data augmentation, and loss function. First, we devise an e
发表于 2025-3-22 09:11:20 | 显示全部楼层
发表于 2025-3-22 13:04:34 | 显示全部楼层
发表于 2025-3-22 17:23:42 | 显示全部楼层
发表于 2025-3-22 22:54:22 | 显示全部楼层
Understanding Individual Decisions of CNNs via Contrastive Backpropagationr understand individual decisions of deep convolutional neural networks. The saliency maps produced by them are proven to be non-discriminative. Recently, the Layer-wise Relevance Propagation (LRP) approach was proposed to explain the classification decisions of rectifier neural networks. In this wo
发表于 2025-3-23 02:32:06 | 显示全部楼层
Say Yes to the Dress: Shape and Style Transfer Using Conditional GANsmage, while maintaining the image content and object shapes. In this paper we transfer both the shape and style of chosen objects between images, leaving the remaining areas unaltered. To tackle this problem, we propose a two stage method, where each stage contains a generative adversarial network,
发表于 2025-3-23 06:46:05 | 显示全部楼层
Towards Multi-class Object Detection in Unconstrained Remote Sensing Imageryfic monitoring and disaster management. The huge variation in object scale, orientation, category, and complex backgrounds, as well as the different camera sensors pose great challenges for current algorithms. In this work, we propose a new method consisting of a novel joint image cascade and featur
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 23:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表