找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision –ACCV 2016; 13th Asian Conferenc Shang-Hong Lai,Vincent Lepetit,Yoichi Sato Conference proceedings 2017 Springer Internatio

[复制链接]
查看: 50872|回复: 61
发表于 2025-3-21 19:31:46 | 显示全部楼层 |阅读模式
书目名称Computer Vision –ACCV 2016
副标题13th Asian Conferenc
编辑Shang-Hong Lai,Vincent Lepetit,Yoichi Sato
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision –ACCV 2016; 13th Asian Conferenc Shang-Hong Lai,Vincent Lepetit,Yoichi Sato Conference proceedings 2017 Springer Internatio
描述.The five-volume set LNCS 10111-10115 constitutes the thoroughly refereed post-conference proceedings of the 13th Asian Conference on Computer Vision, ACCV 2016, held in Taipei, Taiwan, in November 2016. ..The total of 143 contributions presented in these volumes was carefully reviewed and selected from 479 submissions. The papers are organized in topical sections on Segmentation and Classification; Segmentation and Semantic Segmentation; Dictionary Learning, Retrieval, and Clustering; Deep Learning; People Tracking and Action Recognition; People and Actions; Faces; Computational Photography; Face and Gestures; Image Alignment; Computational Photography and Image Processing; Language and Video; 3D Computer Vision; Image Attributes, Language, and Recognition; Video Understanding; and 3D Vision..
出版日期Conference proceedings 2017
关键词3D vision; clustering; computer vision; image processing; neural networks; action recognition; computation
版次1
doihttps://doi.org/10.1007/978-3-319-54181-5
isbn_softcover978-3-319-54180-8
isbn_ebook978-3-319-54181-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Computer Vision –ACCV 2016影响因子(影响力)




书目名称Computer Vision –ACCV 2016影响因子(影响力)学科排名




书目名称Computer Vision –ACCV 2016网络公开度




书目名称Computer Vision –ACCV 2016网络公开度学科排名




书目名称Computer Vision –ACCV 2016被引频次




书目名称Computer Vision –ACCV 2016被引频次学科排名




书目名称Computer Vision –ACCV 2016年度引用




书目名称Computer Vision –ACCV 2016年度引用学科排名




书目名称Computer Vision –ACCV 2016读者反馈




书目名称Computer Vision –ACCV 2016读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:21:21 | 显示全部楼层
发表于 2025-3-22 00:37:32 | 显示全部楼层
发表于 2025-3-22 08:25:05 | 显示全部楼层
发表于 2025-3-22 08:58:15 | 显示全部楼层
The Development of the Vertebrate Retinan an instance of the class, and further process good proposals to produce an accurate object cutout mask. This amounts to an automatic end-to-end pipeline for catergory-specific object cutout. We evaluate our approach on segmentation benchmark datasets, and show that it significantly outperforms the
发表于 2025-3-22 14:48:00 | 显示全部楼层
发表于 2025-3-22 19:05:42 | 显示全部楼层
Deep Supervised Hashing with Triplet Labelsmaximizing the likelihood of pairwise similarities. Inspired by DPSH [.], we propose a triplet label based deep hashing method which aims to maximize the likelihood of the given triplet labels. Experimental results show that our method outperforms all the baselines on CIFAR-10 and NUS-WIDE datasets,
发表于 2025-3-23 00:27:29 | 显示全部楼层
Boosting Zero-Shot Image Classification via Pairwise Relationship LearningExtensive experiments validate the effectiveness of our method: with the properly learned pairwise relationships, we successfully boost the mean class accuracy of DAP on two standard benchmarks for the ZSIC problem, . and ., from . to . and . to ., respectively. Besides, experimental results on the
发表于 2025-3-23 03:30:54 | 显示全部楼层
发表于 2025-3-23 09:29:38 | 显示全部楼层
FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-Based CNN Architecture competitive results with the state-of-the-art methods on the challenging SUN RGB-D benchmark obtaining 76.27% global accuracy, 48.30% average class accuracy and 37.29% average intersection-over-union score.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 18:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表