找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision –ACCV 2016; 13th Asian Conferenc Shang-Hong Lai,Vincent Lepetit,Yoichi Sato Conference proceedings 2017 Springer Internatio

[复制链接]
查看: 40646|回复: 61
发表于 2025-3-21 19:03:59 | 显示全部楼层 |阅读模式
书目名称Computer Vision –ACCV 2016
副标题13th Asian Conferenc
编辑Shang-Hong Lai,Vincent Lepetit,Yoichi Sato
视频videohttp://file.papertrans.cn/235/234115/234115.mp4
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision –ACCV 2016; 13th Asian Conferenc Shang-Hong Lai,Vincent Lepetit,Yoichi Sato Conference proceedings 2017 Springer Internatio
描述.The five-volume set LNCS 10111-10115 constitutes the thoroughly refereed post-conference proceedings of the 13th Asian Conference on Computer Vision, ACCV 2016, held in Taipei, Taiwan, in November 2016..The total of 143 contributions presented in these volumes was carefully reviewed and selected from 479 submissions. The papers are organized in topical sections on Segmentation and Classification; Segmentation and Semantic Segmentation; Dictionary Learning, Retrieval, and Clustering; Deep Learning; People Tracking and Action Recognition; People and Actions; Faces; Computational Photography; Face and Gestures; Image Alignment; Computational Photography and Image Processing; Language and Video; 3D Computer Vision; Image Attributes, Language, and Recognition; Video Understanding; and 3D Vision..
出版日期Conference proceedings 2017
关键词3D vision; clustering; computer vision; image processing; neural networks; action recognition; computation
版次1
doihttps://doi.org/10.1007/978-3-319-54193-8
isbn_softcover978-3-319-54192-1
isbn_ebook978-3-319-54193-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Computer Vision –ACCV 2016影响因子(影响力)




书目名称Computer Vision –ACCV 2016影响因子(影响力)学科排名




书目名称Computer Vision –ACCV 2016网络公开度




书目名称Computer Vision –ACCV 2016网络公开度学科排名




书目名称Computer Vision –ACCV 2016被引频次




书目名称Computer Vision –ACCV 2016被引频次学科排名




书目名称Computer Vision –ACCV 2016年度引用




书目名称Computer Vision –ACCV 2016年度引用学科排名




书目名称Computer Vision –ACCV 2016读者反馈




书目名称Computer Vision –ACCV 2016读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:01:22 | 显示全部楼层
Visual Saliency Detection for RGB-D Images with Generative Modelmodel. The depth feature map is extracted based on superpixel contrast computation with spatial priors. We model the depth saliency map by approximating the density of depth-based contrast features using a Gaussian distribution. Similar to the depth saliency computation, the colour saliency map is c
发表于 2025-3-22 01:05:40 | 显示全部楼层
发表于 2025-3-22 06:49:20 | 显示全部楼层
发表于 2025-3-22 12:07:00 | 显示全部楼层
Generalized Fusion Moves for Continuous Label Optimizationpixel lattices and seek to assign discrete or continuous values (or both) to each pixel such that a combined data term and a spatial smoothness prior are minimized. In this work we propose to minimize difficult energies using repeated generalized fusion moves. In contrast to standard fusion moves, t
发表于 2025-3-22 16:31:11 | 显示全部楼层
发表于 2025-3-22 18:45:15 | 显示全部楼层
phi-LSTM: A Phrase-Based Hierarchical LSTM Model for Image Captioningbe their attributes, and recognize their relationships/interactions. In this paper, we propose a phrase-based hierarchical Long Short-Term Memory (phi-LSTM) model to generate image description. The proposed model encodes sentence as a sequence of combination of phrases and words, instead of a sequen
发表于 2025-3-22 22:56:29 | 显示全部楼层
发表于 2025-3-23 04:21:57 | 显示全部楼层
发表于 2025-3-23 06:42:26 | 显示全部楼层
Using Gaussian Processes to Improve Zero-Shot Learning with Relative Attributesimage is expressed in terms of attributes that are relatively specified between different class pairs. However, for zero-shot learning the authors had assumed a simple Gaussian Mixture Model (GMM) that used the GMM based clustering to obtain the label for an unknown target test example. In this pape
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-16 06:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表