找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision - ACCV 2010; 10th Asian Conferenc Ron Kimmel,Reinhard Klette,Akihiro Sugimoto Conference proceedings 2011 Springer Berlin H

[复制链接]
楼主: 衰退
发表于 2025-3-28 15:03:23 | 显示全部楼层
发表于 2025-3-28 21:45:34 | 显示全部楼层
发表于 2025-3-28 23:55:33 | 显示全部楼层
Generic Object Class Detection Using Boosted Configurations of Oriented Edgesble configurations of oriented edges. An ensemble of such configurations is learnt in a boosting framework. Each edge configuration can capture some local . shape property of the target class and the representation is thus . to representing and detecting visual classes that have distinctive local st
发表于 2025-3-29 05:39:45 | 显示全部楼层
发表于 2025-3-29 07:45:40 | 显示全部楼层
发表于 2025-3-29 13:36:45 | 显示全部楼层
发表于 2025-3-29 18:05:41 | 显示全部楼层
发表于 2025-3-29 20:30:08 | 显示全部楼层
Multi-Target Tracking by Learning Class-Specific and Instance-Specific Cuesled Data-Driven Particle Filtering (DDPF). The learned . include an online learned geometrical model for excluding detection outliers that violate geometrical constraints, global pose estimators shared by all targets for particle refinement, and online Boosting based appearance models which select d
发表于 2025-3-30 01:42:02 | 显示全部楼层
Modeling Complex Scenes for Accurate Moving Objects Segmentationround subtraction. We propose an online and unsupervised technique to find optimal segmentation in a Markov Random Field (MRF) framework. To improve the accuracy, color, locality, temporal coherence and spatial consistency are fused together in the framework. The models of color, locality and tempor
发表于 2025-3-30 04:22:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 15:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表