找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision and Image Processing; 6th International Co Balasubramanian Raman,Subrahmanyam Murala,Puneet G Conference proceedings 2022 T

[复制链接]
楼主: 热爱
发表于 2025-3-30 09:19:12 | 显示全部楼层
,Leaf Segmentation and Counting for Phenotyping of Rosette Plants Using Xception-style U-Net and Watth the dice coefficient of 0.9685. Xception-style U-Net, along with the watershed algorithm, achieves an average difference in leaf count (DiC) of 0.26 and absolute difference in leaf count (.) of 1.93, better than existing methods in the literature.
发表于 2025-3-30 14:22:27 | 显示全部楼层
,Fast and Secure Video Encryption Using Divide-and-Conquer and Logistic Tent Infinite Collapse Chaotls are arranged into frames and pixels are further substituted at frame level with another chaotic sequence generated by LT-ICM. Experimental results establish that our proposed method is efficient in terms of encryption time, correlation coefficients and entropy values compared to some of the exist
发表于 2025-3-30 18:08:39 | 显示全部楼层
,Detection of Cataract from Fundus Images Using Deep Transfer Learning,l parameters evenly. Its scaling approach consistently scales network breadth, depth, and resolution with a set of predefined scaling coefficients. Experiments have been conducted on the publicly available ODIR dataset (Ocular Disease Intelligent Recognition) and the proposed method is validated usi
发表于 2025-3-30 22:52:37 | 显示全部楼层
发表于 2025-3-31 01:23:55 | 显示全部楼层
https://doi.org/10.1007/978-1-4302-3052-61e−2, 1e−3 and 1e−4 and sgdm, adam, rmsprop as optimizers. Further the same networks are experimented using classifiers support vector machine (SVM), k nearest neighbor (KNN) and decision tree (DT) for varied learning rates and optimizers. Inception-v4 network has observed an highest overall accurac
发表于 2025-3-31 06:06:17 | 显示全部楼层
发表于 2025-3-31 09:29:46 | 显示全部楼层
发表于 2025-3-31 14:26:35 | 显示全部楼层
发表于 2025-3-31 21:35:48 | 显示全部楼层
David Hows,Peter Membrey,Tim Hawkins-class classification problem, the EfficientNet-B7 model has achieved the highest classification accuracy of 90.90%. With such a high rate of success, the EfficientNet-B7 model may be a useful method for pathologists in determining the stage of prostate cancer.
发表于 2025-3-31 23:02:58 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 00:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表