找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision Using Local Binary Patterns; Matti Pietikäinen,Abdenour Hadid,Timo Ahonen Book 2011 Springer-Verlag London Limited 2011 Co

[复制链接]
查看: 24122|回复: 50
发表于 2025-3-21 17:05:25 | 显示全部楼层 |阅读模式
书目名称Computer Vision Using Local Binary Patterns
编辑Matti Pietikäinen,Abdenour Hadid,Timo Ahonen
视频videohttp://file.papertrans.cn/235/234039/234039.mp4
概述Written by pioneers in the topic of Local Binary Patterns.Contains a wealth of illustrations to aid a deeper understanding of the subject.Offers those working with LBPs a single point of reference by
丛书名称Computational Imaging and Vision
图书封面Titlebook: Computer Vision Using Local Binary Patterns;  Matti Pietikäinen,Abdenour Hadid,Timo Ahonen Book 2011 Springer-Verlag London Limited 2011 Co
描述.The recent emergence of Local Binary Patterns (LBP) has led to significant progress in applying texture methods to various computer vision problems and applications. The focus of this research has broadened from 2D textures to 3D textures and spatiotemporal (dynamic) textures. Also, where texture was once utilized for applications such as remote sensing, industrial inspection and biomedical image analysis, the introduction of LBP-based approaches have provided outstanding results in problems relating to face and activity analysis, with future scope for face and facial expression recognition, biometrics, visual surveillance and video analysis. .Computer Vision Using Local Binary Patterns. provides a detailed description of the LBP methods and their variants both in spatial and spatiotemporal domains. This comprehensive reference also provides an excellent overview as to how texture methods can be utilized for solving different kinds of computer vision and image analysis problems. Source codes of the basic LBP algorithms, demonstrations, some databases and a comprehensive LBP bibliography can be found from an accompanying web site. .Topics include: local binary patterns and their va
出版日期Book 2011
关键词Computer Vision; Face Analysis; Image and Video Analysis; Local Binary Pattern Operator; Local Descripto
版次1
doihttps://doi.org/10.1007/978-0-85729-748-8
isbn_softcover978-1-4471-2665-2
isbn_ebook978-0-85729-748-8Series ISSN 1381-6446
issn_series 1381-6446
copyrightSpringer-Verlag London Limited 2011
The information of publication is updating

书目名称Computer Vision Using Local Binary Patterns影响因子(影响力)




书目名称Computer Vision Using Local Binary Patterns影响因子(影响力)学科排名




书目名称Computer Vision Using Local Binary Patterns网络公开度




书目名称Computer Vision Using Local Binary Patterns网络公开度学科排名




书目名称Computer Vision Using Local Binary Patterns被引频次




书目名称Computer Vision Using Local Binary Patterns被引频次学科排名




书目名称Computer Vision Using Local Binary Patterns年度引用




书目名称Computer Vision Using Local Binary Patterns年度引用学科排名




书目名称Computer Vision Using Local Binary Patterns读者反馈




书目名称Computer Vision Using Local Binary Patterns读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:45:09 | 显示全部楼层
Texture Classification and Segmentationts involving LBP descriptors. An unsupervised method for texture segmentation using LBP and contrast (LBP/C) distributions is presented in the second part of the chapter. This method has become very popular, and many variants of it have been proposed, for example for color-texture segmentation and segmentation of remotely sensed images.
发表于 2025-3-22 03:07:24 | 显示全部楼层
Recognition and Segmentation of Dynamic Texturesent recognition results are obtained for different test databases providing state-of-the-art performance. The segmentation method extends the unsupervised segmentation method presented in Chap. . into spatiotemporal domain. It provides very promising results with less computational complexity than most other methods.
发表于 2025-3-22 07:24:11 | 显示全部楼层
Background Subtraction This chapter presents a robust texture-based method for modeling the background and detecting moving objects, obtaining state-of-the-art performance. The method has been successfully used in a multi-object tracking system, for example.
发表于 2025-3-22 08:52:33 | 显示全部楼层
LBP in Different Applicationsent image analysis problems and applications around the world. Among the most important areas of application are face analysis, biometrics, biomedical image analysis, industrial inspection and video analysis. This chapter presents a brief introduction to some representative papers from different application areas.
发表于 2025-3-22 13:47:55 | 显示全部楼层
发表于 2025-3-22 17:03:20 | 显示全部楼层
发表于 2025-3-23 00:07:41 | 显示全部楼层
Computing Models for Faint-Galaxy Samplests involving LBP descriptors. An unsupervised method for texture segmentation using LBP and contrast (LBP/C) distributions is presented in the second part of the chapter. This method has become very popular, and many variants of it have been proposed, for example for color-texture segmentation and segmentation of remotely sensed images.
发表于 2025-3-23 03:38:50 | 显示全部楼层
发表于 2025-3-23 06:32:02 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 14:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表