找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision - ACCV 2012 Workshops; ACCV 2012 Internatio Jong-Il Park,Junmo Kim Conference proceedings 2013 Springer-Verlag Berlin Heide

[复制链接]
楼主: Agoraphobia
发表于 2025-3-30 11:11:15 | 显示全部楼层
发表于 2025-3-30 12:27:46 | 显示全部楼层
发表于 2025-3-30 18:54:54 | 显示全部楼层
发表于 2025-3-30 22:01:51 | 显示全部楼层
KinectAvatar: Fully Automatic Body Capture Using a Single Kinect data captured from a single Kinect is sufficient to produce a good quality full 3D human model. In this setting, the challenges we face are the sensor’s low resolution with random noise and the subject’s non-rigid movement when capturing the data. To overcome these challenges, we develop an improve
发表于 2025-3-31 01:32:38 | 显示全部楼层
Essential Body-Joint and Atomic Action Detection for Human Activity Recognition Using Longest Commoncient human activity recognition/classification. Our human activity data is captured by a RGB-D camera, i.e. Kinect, where human skeletons are detected and provided by the Kinect SDK. Unique in our approach is the novel encoding that can effectively convert skeleton data into a symbolic sequence rep
发表于 2025-3-31 05:58:17 | 显示全部楼层
Exploiting Depth and Intensity Information for Head Pose Estimation with Random Forests and Tensor Mse measurements due to large head pose variations and illumination changes. Robust and accurate head pose estimation can be achieved by integrating intensity and depth information. In this paper we introduce a head pose estimation system that employs random forests and tensor regression algorithms.
发表于 2025-3-31 13:16:04 | 显示全部楼层
Dynamic Hand Shape Manifold Embedding and Tracking from Depth Mapsd shape variations. This paper presents a new manifold embedding method that models hand shape variations in different hand configurations and in different views due to hand rotation. Instead of traditional silhouette images, the hand shapes are modeled using depth map images, which provides rich sh
发表于 2025-3-31 16:59:25 | 显示全部楼层
发表于 2025-3-31 21:06:36 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 10:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表