找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision; CCF Chinese Conferen Hongbin Zha,Xilin Chen,Qiguang Miao Conference proceedings 2015 Springer-Verlag Berlin Heidelberg 201

[复制链接]
查看: 8029|回复: 61
发表于 2025-3-21 17:49:09 | 显示全部楼层 |阅读模式
书目名称Computer Vision
副标题CCF Chinese Conferen
编辑Hongbin Zha,Xilin Chen,Qiguang Miao
视频videohttp://file.papertrans.cn/234/233990/233990.mp4
概述Includes supplementary material:
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Computer Vision; CCF Chinese Conferen Hongbin Zha,Xilin Chen,Qiguang Miao Conference proceedings 2015 Springer-Verlag Berlin Heidelberg 201
描述.The two volumes CCIS 546 and 547 constitute the refereed proceedings of the CCF Chinese Conference on Computer Vision, CCCV 2015, held in Xi‘an, China, in September 2015. .The total of 89 revised full papers presented in both volumes were carefully reviewed and selected from 176 submissions. The papers address issues such as computer vision, machine learning, pattern recognition, target recognition, object detection, target tracking, image segmentation, image restoration, face recognition, image classification..
出版日期Conference proceedings 2015
关键词Deep learning; object detection; object recognition; object tracking; video tracking; sparse representati
版次1
doihttps://doi.org/10.1007/978-3-662-48570-5
isbn_softcover978-3-662-48569-9
isbn_ebook978-3-662-48570-5Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer-Verlag Berlin Heidelberg 2015
The information of publication is updating

书目名称Computer Vision影响因子(影响力)




书目名称Computer Vision影响因子(影响力)学科排名




书目名称Computer Vision网络公开度




书目名称Computer Vision网络公开度学科排名




书目名称Computer Vision被引频次




书目名称Computer Vision被引频次学科排名




书目名称Computer Vision年度引用




书目名称Computer Vision年度引用学科排名




书目名称Computer Vision读者反馈




书目名称Computer Vision读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:32:18 | 显示全部楼层
发表于 2025-3-22 04:26:19 | 显示全部楼层
The Crisis of French Sea Power, 1688–1697ors theoretically analyzed the convergence of improved Multi-innovation Kalman Filter algorithm. Finally, simulation results show that the improved algorithm Multi- innovation Kalman Filter is superior to the traditional Kalman Filter.
发表于 2025-3-22 05:54:05 | 显示全部楼层
The Crisis of French Sea Power, 1688–1697t for next frame according to the occlusion map of current tracking result. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods.
发表于 2025-3-22 10:35:51 | 显示全部楼层
Paradoxes of Multiculturalism in Bolivia,ient (HOG)+ Support Vector Machine(SVM)and HSV (Hue, Saturation, Value)+SVM to test the new database and compares these methods with our CNNs model. The results demonstrate the superiority of our CNNs to the other algorithms.
发表于 2025-3-22 15:21:55 | 显示全部楼层
The Social Services and the Inner Cityriptor, the IRoPS descriptor includes the local depth information and it has better discriminative power. Extensive experiments are performed to verify the superior performance of the proposed descriptor.
发表于 2025-3-22 19:40:51 | 显示全部楼层
https://doi.org/10.1007/978-1-349-16163-8plied to obtain the low-dimensional and discriminative feature vector. We evaluated the proposed method on the real-world face image datasets NUST-RWFR, Pubfig and LFW. In all experiments, DGI achieves competitive results compared with state-of-the-art algorithms.
发表于 2025-3-23 00:07:37 | 显示全部楼层
发表于 2025-3-23 02:20:24 | 显示全部楼层
The Social Services and the Inner Cityts demonstrate the system can increase the average peak signal-to-noise ratio of jittered videos around 6.12 dB, The subjective experiments demonstrate the system can increase the identification ability and perceptive comfort on video content.
发表于 2025-3-23 05:54:32 | 显示全部楼层
Local Variation Joint Representation for Face Recognition with Single Sample per Person,ns, while the joint and local collaborative representation could effectively use local information of face images. Experiments on the large-scale CMU Multi-PIE and AR databases demonstrate that the proposed LVJR method achieves better results compared with the existing solutions to the single sample per person problem.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-8 15:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表