找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Science -- Theory and Applications; First International Dima Grigoriev,John Harrison,Edward A. Hirsch Conference proceedings 2006

[复制链接]
楼主: 乌鸦
发表于 2025-3-28 18:37:14 | 显示全部楼层
https://doi.org/10.1007/978-1-349-22199-8d in polynomial time. The previously best approximation ratio for the first class of graphs (also known as unweighted quasi-bipartite graphs) is ≈ 1.217 (Gröpl et al. [4]) is reduced in this paper to 8/7–1/160≈ 1.137. For the case of graphs where terminals form a dominating set, an approximation ratio of 4/3 is achieved.
发表于 2025-3-28 19:41:28 | 显示全部楼层
China’s Grain Economy and Trade Policyrelativisation of .. iterated . times provides a natural separation between Res(.) and Res(.+1). We prove the same result for the iterated relativisation of .. if the tree-like proof system Res*(.) is considered instead of Res (.).
发表于 2025-3-29 02:28:08 | 显示全部楼层
发表于 2025-3-29 06:15:03 | 显示全部楼层
发表于 2025-3-29 10:59:00 | 显示全部楼层
Relativisation Provides Natural Separations for Resolution-Based Proof Systemsrelativisation of .. iterated . times provides a natural separation between Res(.) and Res(.+1). We prove the same result for the iterated relativisation of .. if the tree-like proof system Res*(.) is considered instead of Res (.).
发表于 2025-3-29 11:46:37 | 显示全部楼层
发表于 2025-3-29 17:14:24 | 显示全部楼层
https://doi.org/10.1007/978-1-349-22199-8for all . ≥ 2. Further, this is equivalent to the existence of a propositional proof system in which the disjointness of all .-tuples is shortly provable. We also show that a strengthening of this conditions characterizes the existence of optimal proof systems.
发表于 2025-3-29 21:57:04 | 显示全部楼层
发表于 2025-3-29 23:55:22 | 显示全部楼层
发表于 2025-3-30 05:53:08 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 08:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表