找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Science Logic; 5th Workshop, CSL ‘9 Egon Börger,Gerhard Jäger,Michael M. Richter Conference proceedings 1992 Springer-Verlag Berli

[复制链接]
楼主: retort
发表于 2025-3-26 22:20:05 | 显示全部楼层
发表于 2025-3-27 04:31:24 | 显示全部楼层
发表于 2025-3-27 08:42:23 | 显示全部楼层
发表于 2025-3-27 09:52:11 | 显示全部楼层
A new approach to abstract data types II computation on ADTs as ordinary computation,sented in Part I of this paper. This is provided by a form of generalized recursion theory (g.r.t.) which uses schemata for explicit definition, conditional definition and least fixed point (LFP) recursion in partial functions and functionals of type level ≤2 over any appropriate structure. It is sh
发表于 2025-3-27 16:29:27 | 显示全部楼层
The cutting plane proof system with bounded degree of falsity,on of formulas as systems of integer inequalities. We define a restriction of this system, the cutting plane system with bounded degree of falsity, and show the results: This system .-simulates resolution and has polynomial size proofs for the pigeonhole formulas. The formulas from [ 9] only have su
发表于 2025-3-27 21:36:34 | 显示全部楼层
Denotational versus declarative semantics for functional programming,bdomain. On the other hand, the usual . for logic programs is . (F.O.) and given by the least Herbrand model. In this paper, we take a restricted kind of H.O. conditional rewriting systems as computational paradigm for functional programming. For these systems, we define both H.O. denotational and F
发表于 2025-3-28 01:53:35 | 显示全部楼层
发表于 2025-3-28 04:31:18 | 显示全部楼层
发表于 2025-3-28 09:48:32 | 显示全部楼层
Logical inference and polyhedral projection,tain a restricted set of atoms (i.e., all inferences that pertain to a given question) as a logical projection problem. We show that polyhedral projection partially solves this problem and in particular derives precisely those inferences that can be obtained by a certain form of unit resolution. We
发表于 2025-3-28 12:42:28 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 04:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表