找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ComputerPerformance Engineering; 18th European Worksh Katja Gilly,Nigel Thomas Conference proceedings 2023 The Editor(s) (if applicable) an

[复制链接]
楼主: GRASS
发表于 2025-3-25 03:36:52 | 显示全部楼层
A Deterministic Model to Predict Execution Time of Spark Applicationsrunning a big data query (Query-64 of TPC-DS benchmark) that involves parallel execution of a large number of stages. The query is executed on the spark cluster of Google Cloud. Our model resulted in an execution time that is at 2.85% error in comparison to the measured execution time.
发表于 2025-3-25 10:38:30 | 显示全部楼层
发表于 2025-3-25 15:03:03 | 显示全部楼层
https://doi.org/10.1007/978-3-031-25049-1artificial intelligence; computer hardware; computer networks; computer programming; computer science; co
发表于 2025-3-25 16:18:23 | 显示全部楼层
发表于 2025-3-25 20:43:15 | 显示全部楼层
https://doi.org/10.1007/978-3-642-99389-3 failure. Streaming systems must be robust in the face of such uncertainty in order to be deemed fit for purpose. Measuring and quantifying a system’s level of robustness is a non-trivial task. We present, compare and contrast a range of non-parametric goodness-of-fit tests which can act as quantifi
发表于 2025-3-26 03:55:04 | 显示全部楼层
发表于 2025-3-26 06:21:57 | 显示全部楼层
发表于 2025-3-26 11:41:30 | 显示全部楼层
发表于 2025-3-26 14:30:42 | 显示全部楼层
https://doi.org/10.1007/978-3-531-90887-8rgy). We derive and show features of the expected waiting times of customers at every system state. While the system can be modeled using only two variables, it is necessary to adopt one more dimension to derive the expected waiting time at a specific state. Furthermore, we propose a loop algorithm
发表于 2025-3-26 20:20:24 | 显示全部楼层
https://doi.org/10.1007/978-3-531-90887-8 protect against possibly lengthy recovery periods is in operation. The problem of how to choose a checkpointing interval in order to optimize performance is addressed by analysing a general queueing model which includes breakdowns, repairs, back-ups and recoveries. Exact solutions are obtained unde
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 21:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表