找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Stem Cell Biology; Methods and Protocol Patrick Cahan Book 2019 Springer Science+Business Media, LLC, part of Springer Nature

[复制链接]
楼主: 尤指植物
发表于 2025-3-26 21:08:36 | 显示全部楼层
发表于 2025-3-27 01:24:50 | 显示全部楼层
发表于 2025-3-27 08:33:42 | 显示全部楼层
https://doi.org/10.1007/978-981-19-4847-3via analytical calculation or stochastic simulations of the model’s Master equation, and to predict the outcomes of clonal statistics for respective hypotheses. We also illustrate two approaches to compare these predictions directly with the clonal data to assess the models.
发表于 2025-3-27 09:56:52 | 显示全部楼层
Sustainable Tertiary Education in Asia landscape. Hopfield networks are auto-associative artificial neural networks; input patterns are stored as attractors of the network and can be recalled from noisy or incomplete inputs. The resulting models capture the temporal dynamics of a gene regulatory network, yielding quantitative insight into cellular development and phenotype.
发表于 2025-3-27 15:44:18 | 显示全部楼层
发表于 2025-3-27 20:32:29 | 显示全部楼层
发表于 2025-3-27 23:38:07 | 显示全部楼层
Cem Bağıran,Ayşegül Körlü,Saadet Yaparmajor interest. Therefore, here we present an in-house state-of-the-art scRNA-seq data analyses workflow for de novo lineage tree inference and stem cell identity prediction applicable to many biological processes under current investigation.
发表于 2025-3-28 03:42:18 | 显示全部楼层
Cem Bağıran,Ayşegül Körlü,Saadet Yaparcol outlines the steps for modeling steady-state and dynamic metabolic behavior using transcriptomics and time-course metabolomics data, respectively. Using data from naive and primed pluripotent stem cells, we demonstrate how we can use genome-scale modeling and DFA to comprehensively characterize the metabolic differences between these states.
发表于 2025-3-28 06:33:03 | 显示全部楼层
发表于 2025-3-28 13:55:12 | 显示全部楼层
Quantitative Modelling of the Waddington Epigenetic Landscape landscape. Hopfield networks are auto-associative artificial neural networks; input patterns are stored as attractors of the network and can be recalled from noisy or incomplete inputs. The resulting models capture the temporal dynamics of a gene regulatory network, yielding quantitative insight into cellular development and phenotype.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-9 10:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表