找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Pathology and Ophthalmic Medical Image Analysis; First International Danail Stoyanov,Zeike Taylor,Hrvoje Bogunovic Conferenc

[复制链接]
楼主: TRACT
发表于 2025-3-23 11:29:18 | 显示全部楼层
DeepCerv: Deep Neural Network for Segmentation Free Robust Cervical Cell Classificationever traditional algorithms for the same depend on accurate segmentation of cells, which in itself is an open problem. Often the algorithms are also not evaluated by considering the huge inter-observer variability in ground truth labels. We propose a new deep learning algorithm that does not depend
发表于 2025-3-23 14:47:17 | 显示全部楼层
发表于 2025-3-23 18:44:53 | 显示全部楼层
发表于 2025-3-23 22:21:32 | 显示全部楼层
发表于 2025-3-24 02:35:32 | 显示全部楼层
发表于 2025-3-24 08:47:03 | 显示全部楼层
Automatic Detection of Tumor Budding in Colorectal Carcinoma with Deep Learningr. We explored the application of deep learning techniques to detect TB in Hematoxylin and Eosin (H&E) stained slides, and used convolutional neural networks to classify image patches as containing tumor buds, tumor glands and background. As a reference standard for training we stained slides both w
发表于 2025-3-24 13:07:32 | 显示全部楼层
发表于 2025-3-24 18:30:18 | 显示全部楼层
Image Magnification Regression Using DenseNet for Exploiting Histopathology Open Access Content models. Nevertheless, accurate labeling of large-scale medical datasets is not available and poses challenging tasks for using such datasets. Predicting unknown magnification levels and standardize staining procedures is a necessary preprocessing step for using this data in retrieval and classifica
发表于 2025-3-24 19:45:16 | 显示全部楼层
https://doi.org/10.1007/978-3-662-47801-1ased on gray level or color features were trained using leave-one-out forward selection. The best colon tissue classifier was based on color texture features obtaining an average tissue precision-recall (PR) area under the curve (AUC) of 0.886 and a cancer PR-AUC of 0.950 on 20 validation WSI H&E stains.
发表于 2025-3-25 00:03:05 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 17:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表