找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Methods for Predicting Post-Translational Modification Sites; Dukka B. KC Book 2022 The Editor(s) (if applicable) and The Au

[复制链接]
楼主: 恶化
发表于 2025-3-25 05:18:33 | 显示全部楼层
Bioinformatic Analyses of Peroxiredoxins and RF-Prx: A Random Forest-Based Predictor and Classifiernamed “RF-Prx” based on a random forest (RF) approach integrated with K-space amino acid pairs (KSAAP) to identify peroxiredoxins and classify them into one of six subgroups. Our process performed in a superior manner compared to other machine learning classifiers. Thus the RF approach integrated wi
发表于 2025-3-25 11:31:13 | 显示全部楼层
发表于 2025-3-25 11:49:50 | 显示全部楼层
Systematic Characterization of Lysine Post-translational Modification Sites Using MUscADEL,te Deep Learner for lysine PTMs). Specifically, MUscADEL employs bidirectional long short-term memory (BiLSTM) recurrent neural networks and is capable of predicting eight major types of lysine PTMs in both the human and mouse proteomes. The web server of MUscADEL is publicly available at . for the
发表于 2025-3-25 16:30:38 | 显示全部楼层
Exploration of Protein Posttranslational Modification Landscape and Cross Talk with CrossTalkMappere present a workflow to visualize histone proteins and their myriad of PTMs based on different R visualization modules applied to data from quantitative middle-down experiments. The procedure can be adapted to diverse experimental designs and is applicable to different proteins and PTMs.
发表于 2025-3-25 22:05:06 | 显示全部楼层
发表于 2025-3-26 02:27:25 | 显示全部楼层
发表于 2025-3-26 05:12:39 | 显示全部楼层
发表于 2025-3-26 08:29:27 | 显示全部楼层
发表于 2025-3-26 15:45:20 | 显示全部楼层
发表于 2025-3-26 17:46:22 | 显示全部楼层
J. R. McFarlane,M. Mullin,E. Jacksonnamed “RF-Prx” based on a random forest (RF) approach integrated with K-space amino acid pairs (KSAAP) to identify peroxiredoxins and classify them into one of six subgroups. Our process performed in a superior manner compared to other machine learning classifiers. Thus the RF approach integrated wi
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 11:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表