找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Methods for Deep Learning; Theoretic, Practice Wei Qi Yan Textbook 20211st edition The Editor(s) (if applicable) and The Aut

[复制链接]
查看: 40189|回复: 44
发表于 2025-3-21 17:18:07 | 显示全部楼层 |阅读模式
书目名称Computational Methods for Deep Learning
副标题Theoretic, Practice
编辑Wei Qi Yan
视频videohttp://file.papertrans.cn/233/232712/232712.mp4
概述Introduce deep learning from mathematical viewpoint.Review mathematical methods in Bachelor and Master’s degree level.Detail mathematical approaches to resolve deep learning problems.Provide methodolo
丛书名称Texts in Computer Science
图书封面Titlebook: Computational Methods for Deep Learning; Theoretic, Practice  Wei Qi Yan Textbook 20211st edition The Editor(s) (if applicable) and The Aut
描述.Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from graphical theory, mathematical models, and algorithmic implementation, as well as covers datasets preparation, programming, results analysis and evaluations..Beginning with a grounding about artificial neural networks with neurons and the activation functions, the work then explains the mechanism of deep learning using advanced mathematics. In particular, it emphasizes how to use TensorFlow and the latest MATLAB deep-learning toolboxes for implementing deep learning algorithms..As a prerequisite, readers should have a solid understanding especially of mathematical analysis, linear algebra, numerical analysis, optimizations, differential geometry, manifold, and information theory, as well as basic algebra, functional analysis, and graphical models. This computational knowledge will assist in comprehending the subject matter not only of this text/reference, but also in relevant deep learni
出版日期Textbook 20211st edition
关键词Deep Learning; Machine Learning; Pattern Analysis; Manifold Learning; Machine Vision; Reinforcement Learn
版次1
doihttps://doi.org/10.1007/978-3-030-61081-4
isbn_softcover978-3-030-61083-8
isbn_ebook978-3-030-61081-4Series ISSN 1868-0941 Series E-ISSN 1868-095X
issn_series 1868-0941
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Computational Methods for Deep Learning影响因子(影响力)




书目名称Computational Methods for Deep Learning影响因子(影响力)学科排名




书目名称Computational Methods for Deep Learning网络公开度




书目名称Computational Methods for Deep Learning网络公开度学科排名




书目名称Computational Methods for Deep Learning被引频次




书目名称Computational Methods for Deep Learning被引频次学科排名




书目名称Computational Methods for Deep Learning年度引用




书目名称Computational Methods for Deep Learning年度引用学科排名




书目名称Computational Methods for Deep Learning读者反馈




书目名称Computational Methods for Deep Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:22:57 | 显示全部楼层
发表于 2025-3-22 01:27:21 | 显示全部楼层
发表于 2025-3-22 07:06:18 | 显示全部楼层
Texts in Computer Sciencehttp://image.papertrans.cn/c/image/232712.jpg
发表于 2025-3-22 11:55:19 | 显示全部楼层
发表于 2025-3-22 16:47:07 | 显示全部楼层
发表于 2025-3-22 19:03:20 | 显示全部楼层
CapsNet and Manifold Learning, a vector to reflect this relationship. Meanwhile, manifold learning, which is emphasized on infinity continuity and was originated from differential geometry, has been applied to nonlinear dimensionality reduction in machine learning.
发表于 2025-3-23 00:29:17 | 显示全部楼层
发表于 2025-3-23 03:36:49 | 显示全部楼层
https://doi.org/10.1007/978-3-031-35323-9re Embedding) is a deep learning framework, which originally was developed at the University of California, Berkeley. Caffe supports visual object detection and classification as well as image segmentation using CNN, R-CNN, LSTM, and fully connected neural networks. Caffe supports GPU-based and CPU-
发表于 2025-3-23 07:14:32 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-14 23:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表