找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Methods for Deep Learning; Theory, Algorithms, Wei Qi Yan Textbook 2023Latest edition The Editor(s) (if applicable) and The

[复制链接]
查看: 24713|回复: 35
发表于 2025-3-21 20:00:26 | 显示全部楼层 |阅读模式
书目名称Computational Methods for Deep Learning
副标题Theory, Algorithms,
编辑Wei Qi Yan
视频videohttp://file.papertrans.cn/233/232711/232711.mp4
概述Explores advanced topics in deep learning encompassing transformer models, control theory, and graph neural networks.Presents detailed mathematical descriptions and algorithms for generative pre-train
丛书名称Texts in Computer Science
图书封面Titlebook: Computational Methods for Deep Learning; Theory, Algorithms,  Wei Qi Yan Textbook 2023Latest edition The Editor(s) (if applicable) and The
描述.The first edition of this textbook was published in 2021. Over the past two years, we have invested in enhancing all aspects of deep learning methods to ensure the book is comprehensive and impeccable. Taking into account feedback from our readers and audience, the author has diligently updated this book. .The second edition of this textbook presents control theory, transformer models, and graph neural networks (GNN) in deep learning. We have incorporated the latest algorithmic advances and large-scale deep learning models, such as GPTs, to align with the current research trends. Through the second edition, this book showcases how computational methods in deep learning serve as a dynamic driving force in this era of artificial intelligence (AI). . .This book is intended for research students, engineers, as well as computer scientists with interest in computational methods in deep learning. Furthermore, it is also well-suited for researchers exploring topics such as machine intelligence, robotic control, and related areas..
出版日期Textbook 2023Latest edition
关键词Deep Learning; Machine Learning; Pattern Analysis; Manifold Learning; Machine Vision; Reinforcement Learn
版次2
doihttps://doi.org/10.1007/978-981-99-4823-9
isbn_ebook978-981-99-4823-9Series ISSN 1868-0941 Series E-ISSN 1868-095X
issn_series 1868-0941
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Computational Methods for Deep Learning影响因子(影响力)




书目名称Computational Methods for Deep Learning影响因子(影响力)学科排名




书目名称Computational Methods for Deep Learning网络公开度




书目名称Computational Methods for Deep Learning网络公开度学科排名




书目名称Computational Methods for Deep Learning被引频次




书目名称Computational Methods for Deep Learning被引频次学科排名




书目名称Computational Methods for Deep Learning年度引用




书目名称Computational Methods for Deep Learning年度引用学科排名




书目名称Computational Methods for Deep Learning读者反馈




书目名称Computational Methods for Deep Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:46:25 | 显示全部楼层
,Convolutional Neural Networks and Recurrent Neural Networks,ally Region-based CNN (R-CNN), Single Shot MultiBox Detector (SSD), and You Only Look Once (YOLO). Capsule Neural Network (CapsNet) has taken a topological structure of a scene into consideration. The output will be a vector to reflect this geometric relationship.
发表于 2025-3-22 04:11:22 | 显示全部楼层
发表于 2025-3-22 07:31:19 | 显示全部楼层
发表于 2025-3-22 12:06:04 | 显示全部楼层
发表于 2025-3-22 16:39:18 | 显示全部楼层
发表于 2025-3-22 20:11:18 | 显示全部楼层
发表于 2025-3-23 01:07:18 | 显示全部楼层
发表于 2025-3-23 04:40:46 | 显示全部楼层
发表于 2025-3-23 07:57:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 01:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表