找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Medicine in Data Mining and Modeling; Goran Rakocevic,Tijana Djukic,Veljko Milutinović Book 2013 Springer Science+Business M

[复制链接]
查看: 6180|回复: 46
发表于 2025-3-21 18:05:06 | 显示全部楼层 |阅读模式
书目名称Computational Medicine in Data Mining and Modeling
编辑Goran Rakocevic,Tijana Djukic,Veljko Milutinović
视频video
概述Explains the latest cross-disciplinary research based on synergy of results that can be obtained with the different described approaches.Demonstrates applications of data mining to the medical domain.
图书封面Titlebook: Computational Medicine in Data Mining and Modeling;  Goran Rakocevic,Tijana Djukic,Veljko Milutinović Book 2013 Springer Science+Business M
描述This book presents an overview of a variety of contemporary statistical, mathematical and computer science techniques which are used to further the knowledge in the medical domain. The authors focus on applying data mining to the medical domain, including mining the sets of clinical data typically found in patient’s medical records, image mining, medical mining, data mining and machine learning applied to generic genomic data and more.This work also introduces modeling behavior of cancer cells, multi-scale computational models and simulations of blood flow through vessels by using patient-specific models. The authors cover different imaging techniques used to generate patient-specific models. This is used in computational fluid dynamics software to analyze fluid flow. Case studies are provided at the end of each chapter.Professionals and researchers with quantitative backgrounds will find Computational Medicine in Data Mining and Modeling useful as a reference. Advanced-level students studying computer science, mathematics, statistics and biomedicine will also find this book valuable as a reference or secondary text book.
出版日期Book 2013
关键词Biomedical Modeling; Computation in Medicine; Imaging Reconstruction; Medical Data Mining; Patient-Speci
版次1
doihttps://doi.org/10.1007/978-1-4614-8785-2
isbn_softcover978-1-4939-4834-5
isbn_ebook978-1-4614-8785-2
copyrightSpringer Science+Business Media New York 2013
The information of publication is updating

书目名称Computational Medicine in Data Mining and Modeling影响因子(影响力)




书目名称Computational Medicine in Data Mining and Modeling影响因子(影响力)学科排名




书目名称Computational Medicine in Data Mining and Modeling网络公开度




书目名称Computational Medicine in Data Mining and Modeling网络公开度学科排名




书目名称Computational Medicine in Data Mining and Modeling被引频次




书目名称Computational Medicine in Data Mining and Modeling被引频次学科排名




书目名称Computational Medicine in Data Mining and Modeling年度引用




书目名称Computational Medicine in Data Mining and Modeling年度引用学科排名




书目名称Computational Medicine in Data Mining and Modeling读者反馈




书目名称Computational Medicine in Data Mining and Modeling读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:12:17 | 显示全部楼层
发表于 2025-3-22 02:54:23 | 显示全部楼层
Book 2013owledge in the medical domain. The authors focus on applying data mining to the medical domain, including mining the sets of clinical data typically found in patient’s medical records, image mining, medical mining, data mining and machine learning applied to generic genomic data and more.This work a
发表于 2025-3-22 08:06:14 | 显示全部楼层
发表于 2025-3-22 08:56:33 | 显示全部楼层
https://doi.org/10.1007/978-0-387-73251-0 or “severely progressed,” from a second group containing “mildly diseased” or “mildly progressed” patients, respectively. This latter mild/severe characterization is the actual value of the target variable for each patient.
发表于 2025-3-22 13:17:12 | 显示全部楼层
发表于 2025-3-22 20:47:41 | 显示全部楼层
发表于 2025-3-23 01:01:27 | 显示全部楼层
978-1-4939-4834-5Springer Science+Business Media New York 2013
发表于 2025-3-23 02:55:19 | 显示全部楼层
发表于 2025-3-23 07:01:37 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 07:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表