找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Mechanics with Neural Networks; Genki Yagawa,Atsuya Oishi Book 2021 The Editor(s) (if applicable) and The Author(s), under e

[复制链接]
楼主: Jurisdiction
发表于 2025-3-25 06:49:13 | 显示全部楼层
Deep Learning for Computational Mechanics neural networks are reviewed (Sect. .), then the applications of deep learning to the computational mechanics are shown (Sect. . for the applications of deep convolutional networks, and Sect. . for those of deep feedforward networks). Finally, the applications of miscellaneous deep networks to computational mechanics are discussed in Sect. ..
发表于 2025-3-25 11:24:18 | 显示全部楼层
Structural Optimization optimal design of materials (Sect. .), the optimization of production process (Sect. .), the control of dynamic behavior of structures (Sect. .), the subjective evaluation for handling and stability of vehicle (Sect. .), and many others related to this category (Sect. .).
发表于 2025-3-25 15:04:15 | 显示全部楼层
Other AI Technologies for Computational Mechanics manipulation (Sect. .), the contact search using genetic algorithm (Sect. .), the contact search using genetic programming (Sect. .), the non-linear equation systems solved with genetic algorithm (Sect. .), and other applications using various machine learning methods (Sects. .–.).
发表于 2025-3-25 17:37:52 | 显示全部楼层
发表于 2025-3-25 20:19:21 | 显示全部楼层
Book 2021rning method in computational mechanics. Part II highlights the applications of neural networks to a variety of problems of computational mechanics. The final chapter gives perspectives to the applications of the deep learning to computational mechanics..
发表于 2025-3-26 00:59:23 | 显示全部楼层
Computational Mechanics with Neural Networks978-3-030-66111-3Series ISSN 1877-7341 Series E-ISSN 1877-735X
发表于 2025-3-26 07:39:30 | 显示全部楼层
发表于 2025-3-26 08:41:52 | 显示全部楼层
https://doi.org/10.1007/978-981-10-4475-5rical quadrature of the elemental integration. Chapter 9 deals with this issue: Section . describes the classification of the finite elements based on the convergence speed in numerical quadrature, and Sect. . the optimization of quadrature parameters.
发表于 2025-3-26 13:25:42 | 显示全部楼层
发表于 2025-3-26 17:56:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-3 22:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表