找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Mechanics with Deep Learning; An Introduction Genki Yagawa,Atsuya Oishi Textbook 2023 The Editor(s) (if applicable) and The A

[复制链接]
查看: 40097|回复: 48
发表于 2025-3-21 18:53:22 | 显示全部楼层 |阅读模式
书目名称Computational Mechanics with Deep Learning
副标题An Introduction
编辑Genki Yagawa,Atsuya Oishi
视频video
概述Focuses on both computational mechanics and deep learning.Written in an easy-to-understand manner with detailed mathematical formulas.Include samples for practice
丛书名称Lecture Notes on Numerical Methods in Engineering and Sciences
图书封面Titlebook: Computational Mechanics with Deep Learning; An Introduction Genki Yagawa,Atsuya Oishi Textbook 2023 The Editor(s) (if applicable) and The A
描述.This book is intended for students, engineers, and researchers interested in both computational mechanics and deep learning. It presents the mathematical and computational foundations of Deep Learning with detailed mathematical formulas in an easy-to-understand manner. It also discusses various applications of Deep Learning in Computational Mechanics, with detailed explanations of the Computational Mechanics fundamentals selected there. Sample programs are included for the reader to try out in practice. This book is therefore useful for a wide range of readers interested in computational mechanics and deep learning..
出版日期Textbook 2023
关键词Computational Mechanics; Deep Learning; Neural Networks; Machine Learning; Finite Element Method
版次1
doihttps://doi.org/10.1007/978-3-031-11847-0
isbn_softcover978-3-031-11849-4
isbn_ebook978-3-031-11847-0Series ISSN 1877-7341 Series E-ISSN 1877-735X
issn_series 1877-7341
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Computational Mechanics with Deep Learning影响因子(影响力)




书目名称Computational Mechanics with Deep Learning影响因子(影响力)学科排名




书目名称Computational Mechanics with Deep Learning网络公开度




书目名称Computational Mechanics with Deep Learning网络公开度学科排名




书目名称Computational Mechanics with Deep Learning被引频次




书目名称Computational Mechanics with Deep Learning被引频次学科排名




书目名称Computational Mechanics with Deep Learning年度引用




书目名称Computational Mechanics with Deep Learning年度引用学科排名




书目名称Computational Mechanics with Deep Learning读者反馈




书目名称Computational Mechanics with Deep Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:14:48 | 显示全部楼层
Lecture Notes on Numerical Methods in Engineering and Scienceshttp://image.papertrans.cn/c/image/232678.jpg
发表于 2025-3-22 02:12:07 | 显示全部楼层
发表于 2025-3-22 05:44:34 | 显示全部楼层
978-3-031-11849-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-22 11:41:12 | 显示全部楼层
https://doi.org/10.1007/978-1-349-03123-8eural network including the error back propagation algorithm, Sect. . the convolutional neural networks, which have become the mainstream of deep learning in recent years, and Sect. . compares various methods for accelerating the training process. Finally, Sect. . describes regularization methods to
发表于 2025-3-22 13:41:09 | 显示全部楼层
发表于 2025-3-22 20:37:14 | 显示全部楼层
https://doi.org/10.1007/978-1-349-19936-5llision between objects is one of them. In this chapter, we study an application of deep learning to the contact search process, which is indispensable in contact and collision analysis. In particular, we focus on the contact between two smooth contact surfaces. In Sect. ., the basics of the contact
发表于 2025-3-23 00:40:36 | 显示全部楼层
https://doi.org/10.1007/978-1-349-19936-5uss the application of deep learning to fluid dynamics problems. Section . describes the basic equations of fluid dynamics, Sect. . the basics of the finite difference method, one of the most popular methods for solving fluid dynamics problems, Sect. . a practical example of a two-dimensional fluid
发表于 2025-3-23 02:55:04 | 显示全部楼层
Organizing and Working in a Study Group,cy of element stiffness matrices (Sect. .), finite element analysis using convolutional operations (Sect. .), fluid analysis using variational autoencoders (Sect. .), a zooming method using feedforward neural networks (Sect. .), and an application of physics-informed neural networks to solid mechani
发表于 2025-3-23 07:32:40 | 显示全部楼层
https://doi.org/10.1007/978-981-16-2305-9mputational Mechanics with Deep Learning” from the perspective of programming. Section . describes some programs in the field of computational mechanics used in the Data Preparation Phase, including three topics discussed in the case study: the element stiffness matrix by using numerical quadrature
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-4 06:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表