找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Linguistics and Intelligent Text Processing; 12th International C Alexander F. Gelbukh Conference proceedings 2011 Springer B

[复制链接]
查看: 14808|回复: 70
发表于 2025-3-21 19:11:33 | 显示全部楼层 |阅读模式
书目名称Computational Linguistics and Intelligent Text Processing
副标题12th International C
编辑Alexander F. Gelbukh
视频video
概述Fast-track conference proceedings
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computational Linguistics and Intelligent Text Processing; 12th International C Alexander F. Gelbukh Conference proceedings 2011 Springer B
描述This two-volume set, consisting of LNCS 6608 and LNCS 6609, constitutes the thoroughly refereed proceedings of the 12th International Conference on Computer Linguistics and Intelligent Processing, held in Tokyo, Japan, in February 2011.The 74 full papers, presented together with 4 invited papers, were carefully reviewed and selected from 298 submissions.The contents have been ordered according to the following topical sections: lexical resources; syntax and parsing; part-of-speech tagging and morphology;word sense disambiguation; semantics and discourse; opinion mining and sentiment detection; text generation;machine translation and multilingualism; information extraction and information retrieval; text categorization and classification; summarization and recognizing textual entailment; authoring aid, error correction, and style analysis; and speech recognition and generation.
出版日期Conference proceedings 2011
关键词NLP; association rule mining; automatic query answering; bootstrapping; computer assisted translation; co
版次1
doihttps://doi.org/10.1007/978-3-642-19400-9
isbn_softcover978-3-642-19399-6
isbn_ebook978-3-642-19400-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Berlin Heidelberg 2011
The information of publication is updating

书目名称Computational Linguistics and Intelligent Text Processing影响因子(影响力)




书目名称Computational Linguistics and Intelligent Text Processing影响因子(影响力)学科排名




书目名称Computational Linguistics and Intelligent Text Processing网络公开度




书目名称Computational Linguistics and Intelligent Text Processing网络公开度学科排名




书目名称Computational Linguistics and Intelligent Text Processing被引频次




书目名称Computational Linguistics and Intelligent Text Processing被引频次学科排名




书目名称Computational Linguistics and Intelligent Text Processing年度引用




书目名称Computational Linguistics and Intelligent Text Processing年度引用学科排名




书目名称Computational Linguistics and Intelligent Text Processing读者反馈




书目名称Computational Linguistics and Intelligent Text Processing读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:31:56 | 显示全部楼层
Beate Apolinarski,Christoph Gwosćsupersense tagging show that context-based methods perform well for English unknown words while structure-based methods perform well for Chinese unknown words. The challenge before us is how to successfully combine contextual and structural information together for supersense tagging of Chinese unkn
发表于 2025-3-22 03:22:15 | 显示全部楼层
Christiane Metzger,Rolf Schulmeisteres a conjunct verb in Hindi using a set of linguistic diagnostics. We will then see which of these diagnostics can be used as features in a MaxEnt based automatic identification tool. Finally we will use this tool to incorporate certain features in a graph based dependency parser and show an improve
发表于 2025-3-22 07:31:39 | 显示全部楼层
发表于 2025-3-22 09:04:58 | 显示全部楼层
https://doi.org/10.1007/978-3-658-42276-9iques in NLP show good performances in some tasks when large amount of data (with annotation) are available. However, in order for these techniques to be adapted easily to new text types or domains, or for similar techniques to be applied to more complex tasks such as text entailment than POS tagger
发表于 2025-3-22 14:39:31 | 显示全部楼层
发表于 2025-3-22 19:56:08 | 显示全部楼层
https://doi.org/10.1007/978-3-658-43169-3 parsing with rule-based and corpus-based approaches. We designed annotation scheme partially based on Prague Dependency Treebank (PDT) and manually annotated Tamil data (about 3000 words) with dependency relations. For corpus-based approach, we used two well known parsers MaltParser and MSTParser,
发表于 2025-3-23 00:15:52 | 显示全部楼层
发表于 2025-3-23 05:14:31 | 显示全部楼层
Der wissenschaftliche Publikationsprozessch using Grammar Inference Algorithms. Despite of still having room for improvement, our approach tries to minimize the effect of the current limitations of some grammar inductors by adding morphological information before the grammar induction process, and a novel system for converting a shallow pa
发表于 2025-3-23 07:30:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-2 18:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表