找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Learning Theory; 4th European Confere Paul Fischer,Hans Ulrich Simon Conference proceedings 1999 Springer-Verlag Berlin Heide

[复制链接]
查看: 37723|回复: 62
发表于 2025-3-21 17:41:36 | 显示全部楼层 |阅读模式
书目名称Computational Learning Theory
副标题4th European Confere
编辑Paul Fischer,Hans Ulrich Simon
视频videohttp://file.papertrans.cn/233/232577/232577.mp4
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computational Learning Theory; 4th European Confere Paul Fischer,Hans Ulrich Simon Conference proceedings 1999 Springer-Verlag Berlin Heide
出版日期Conference proceedings 1999
关键词Algorithmic Learning; Computational Learning; Inductive Inference; Online Learning; learning; learning th
版次1
doihttps://doi.org/10.1007/3-540-49097-3
isbn_softcover978-3-540-65701-9
isbn_ebook978-3-540-49097-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 1999
The information of publication is updating

书目名称Computational Learning Theory影响因子(影响力)




书目名称Computational Learning Theory影响因子(影响力)学科排名




书目名称Computational Learning Theory网络公开度




书目名称Computational Learning Theory网络公开度学科排名




书目名称Computational Learning Theory被引频次




书目名称Computational Learning Theory被引频次学科排名




书目名称Computational Learning Theory年度引用




书目名称Computational Learning Theory年度引用学科排名




书目名称Computational Learning Theory读者反馈




书目名称Computational Learning Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:29:20 | 显示全部楼层
发表于 2025-3-22 03:45:13 | 显示全部楼层
发表于 2025-3-22 08:36:15 | 显示全部楼层
https://doi.org/10.1007/978-3-322-87794-9hted average of the experts’ predictions. We show that for a large class of loss functions, even with the simplified prediction rule the additional loss of the algorithm over the loss of the best expert is at most . ln ., where . is the number of experts and . a constant that depends on the loss fun
发表于 2025-3-22 11:46:19 | 显示全部楼层
https://doi.org/10.1007/978-3-658-00686-0operly between hyperrobust Ex-learning and hyperrobust BC-learning. Furthermore, the bounded totally reliably BC-learnable classes are characterized in terms of infinite branches of certain enumerable families of bounded recursive trees. A class of infinite branches of a further family of trees sepa
发表于 2025-3-22 15:06:41 | 显示全部楼层
https://doi.org/10.1007/978-3-658-00686-0lds a uniformly decidable family of languages and has effective bounded finite thickness, then for each natural number . > 0, the class of languages defined by formal systems of length ≤ .:.The above sufficient conditions are employed to give an ordinal mind change bound for learnability of minimal
发表于 2025-3-22 19:05:35 | 显示全部楼层
Open Theoretical Questions in Reinforcement Learning in a given state and ending upon arrival in a terminal state, terminating the series above. In other cases the interaction is continual, without interruption, and the sum may have an infinite number of terms (in which case we usually assume γ < 1). Infinite horizon cases with γ = 1 are also possibl
发表于 2025-3-22 21:59:07 | 显示全部楼层
发表于 2025-3-23 04:02:53 | 显示全部楼层
发表于 2025-3-23 09:25:01 | 显示全部楼层
Averaging Expert Predictionshted average of the experts’ predictions. We show that for a large class of loss functions, even with the simplified prediction rule the additional loss of the algorithm over the loss of the best expert is at most . ln ., where . is the number of experts and . a constant that depends on the loss fun
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-13 11:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表