找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Intelligence in Data Mining - Volume 2; Proceedings of the I Lakhmi C. Jain,Himansu Sekhar Behera,Durga Prasad Conference pr

[复制链接]
查看: 34165|回复: 61
发表于 2025-3-21 16:37:35 | 显示全部楼层 |阅读模式
书目名称Computational Intelligence in Data Mining - Volume 2
副标题Proceedings of the I
编辑Lakhmi C. Jain,Himansu Sekhar Behera,Durga Prasad
视频video
概述Presents latest research findings in data mining.Entails thought-provoking developments to help research students.Discusses most recent cutting edge scientific technologies in computing.Includes suppl
丛书名称Smart Innovation, Systems and Technologies
图书封面Titlebook: Computational Intelligence in Data Mining - Volume 2; Proceedings of the I Lakhmi C. Jain,Himansu Sekhar Behera,Durga Prasad  Conference pr
描述The contributed volume aims to explicate and address the difficulties and challenges that of seamless integration of the two core disciplines of computer science, i.e., computational intelligence and data mining. Data Mining aims at the automatic discovery of underlying non-trivial knowledge from datasets by applying intelligent analysis techniques. The interest in this research area has experienced a considerable growth in the last years due to two key factors: (a) knowledge hidden in organizations’ databases can be exploited to improve strategic and managerial decision-making; (b) the large volume of data managed by organizations makes it impossible to carry out a manual analysis. The book addresses different methods and techniques of integration for enhancing the overall goal of data mining. The book helps to disseminate the knowledge about some innovative, active research directions in the field of data mining, machine and computational intelligence, along with some current issues and applications of related topics.
出版日期Conference proceedings 2015
关键词Advance Computing Methods; Big Data Analysis; CIDM; CIDM 2014; CIDM 2014 Proceedings; CIDM Proceedings; Co
版次1
doihttps://doi.org/10.1007/978-81-322-2208-8
isbn_softcover978-81-322-3561-3
isbn_ebook978-81-322-2208-8Series ISSN 2190-3018 Series E-ISSN 2190-3026
issn_series 2190-3018
copyrightSpringer India 2015
The information of publication is updating

书目名称Computational Intelligence in Data Mining - Volume 2影响因子(影响力)




书目名称Computational Intelligence in Data Mining - Volume 2影响因子(影响力)学科排名




书目名称Computational Intelligence in Data Mining - Volume 2网络公开度




书目名称Computational Intelligence in Data Mining - Volume 2网络公开度学科排名




书目名称Computational Intelligence in Data Mining - Volume 2被引频次




书目名称Computational Intelligence in Data Mining - Volume 2被引频次学科排名




书目名称Computational Intelligence in Data Mining - Volume 2年度引用




书目名称Computational Intelligence in Data Mining - Volume 2年度引用学科排名




书目名称Computational Intelligence in Data Mining - Volume 2读者反馈




书目名称Computational Intelligence in Data Mining - Volume 2读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:52:11 | 显示全部楼层
Strategic Analysis: Strategy Modeling, of metrics for measuring the understand ability of conceptual data model for data warehouses. The statistical and machine learning methods are used to predict effect of structural metrics, on understand ability, efficiency and effectiveness of Data warehouse Multidimensional (MD) conceptual model.
发表于 2025-3-22 00:38:29 | 显示全部楼层
Strategic Planning for The Family Businesshas a strong global search capability is used for dimensionality optimization. Weighted aggregation method is employed as multi-objective functions. The proposed system has the high intrusion detection accuracy of 97.54 % with a detection time is 0.20 s.
发表于 2025-3-22 06:47:06 | 显示全部楼层
发表于 2025-3-22 11:27:00 | 显示全部楼层
发表于 2025-3-22 16:33:11 | 显示全部楼层
,A Study of Interestingness Measures for Knowledge Discovery in Databases—A Genetic Approach,user to select appropriate measure in a particular application domain. The main contribution of the paper is to compare these interestingness measures on diverse datasets by using genetic algorithm and select the best one according to the situation.
发表于 2025-3-22 21:01:38 | 显示全部楼层
Quality Assessment of Data Using Statistical and Machine Learning Methods, of metrics for measuring the understand ability of conceptual data model for data warehouses. The statistical and machine learning methods are used to predict effect of structural metrics, on understand ability, efficiency and effectiveness of Data warehouse Multidimensional (MD) conceptual model.
发表于 2025-3-23 01:07:35 | 显示全部楼层
发表于 2025-3-23 02:40:02 | 显示全部楼层
发表于 2025-3-23 07:49:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 20:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表