找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Intelligence Processing in Medical Diagnosis; Manfred Schmitt,Horia-Nicolai Teodorescu,Lakhmi C. Book 2002 Springer-Verlag B

[复制链接]
楼主: 自由
发表于 2025-3-26 23:21:10 | 显示全部楼层
发表于 2025-3-27 02:30:46 | 显示全部楼层
发表于 2025-3-27 06:42:16 | 显示全部楼层
发表于 2025-3-27 12:04:38 | 显示全部楼层
发表于 2025-3-27 16:10:19 | 显示全部楼层
Genetic Algorithms for Feature Selection in Computer-Aided Diagnosis, CAD can improve the accuracy of breast cancer detection and characterization by radiologists on mammograms. In this chapter, we discuss an important step — feature selection — in classifier design for CAD algorithms. Feature selection reduces the dimensionality of an available feature space and is
发表于 2025-3-27 19:54:04 | 显示全部楼层
Generalizations and Extensions,cutoff was applied to the 100 records of the test file. ROC analysis revealed that a cutoff of 0.30 maximized specificity while maintaining perfect sensitivity in the cutoff determination file. The cutoff of 0.30 also maintained perfect sensitivity in the test file, while the trained network made ou
发表于 2025-3-27 22:58:16 | 显示全部楼层
发表于 2025-3-28 05:11:07 | 显示全部楼层
Computational Intelligence Processing in Medical Diagnosis
发表于 2025-3-28 07:15:55 | 显示全部楼层
Neural Network Predictions of Significant Coronary Artery Stenosis in Women,cutoff was applied to the 100 records of the test file. ROC analysis revealed that a cutoff of 0.30 maximized specificity while maintaining perfect sensitivity in the cutoff determination file. The cutoff of 0.30 also maintained perfect sensitivity in the test file, while the trained network made ou
发表于 2025-3-28 13:45:12 | 显示全部楼层
Genetic Algorithms for Feature Selection in Computer-Aided Diagnosis,xamples illustrate the design of a fitness function for optimizing classification accuracy in terms of the receiver operating characteristics of the classifier, the dependence of GA performance on its evolution parameters, and the design of a fitness function tailored to a specific classification ta
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-27 17:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表