找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Excursions in Analysis and Number Theory; Peter Borwein Book 2002 Springer Science+Business Media New York 2002 Diophantine

[复制链接]
查看: 27136|回复: 61
发表于 2025-3-21 17:26:17 | 显示全部楼层 |阅读模式
书目名称Computational Excursions in Analysis and Number Theory
编辑Peter Borwein
视频video
丛书名称CMS Books in Mathematics
图书封面Titlebook: Computational Excursions in Analysis and Number Theory;  Peter Borwein Book 2002 Springer Science+Business Media New York 2002 Diophantine
描述This book is designed for a topics course in computational number theory. It is based around a number of difficult old problems that live at the interface of analysis and number theory. Some of these problems are the following: The Integer Chebyshev Problem. Find a nonzero polynomial of degree n with integer eoeffieients that has smallest possible supremum norm on the unit interval. Littlewood‘s Problem. Find a polynomial of degree n with eoeffieients in the set { + 1, -I} that has smallest possible supremum norm on the unit disko The Prouhet-Tarry-Escott Problem. Find a polynomial with integer co­ effieients that is divisible by (z - l)n and has smallest possible 1 norm. (That 1 is, the sum of the absolute values of the eoeffieients is minimal.) Lehmer‘s Problem. Show that any monie polynomial p, p(O) i- 0, with in­ teger coefficients that is irreducible and that is not a cyclotomic polynomial has Mahler measure at least 1.1762 .... All of the above problems are at least forty years old; all are presumably very hard, certainly none are completely solved; and alllend themselves to extensive computational explorations. The techniques for tackling these problems are various and inclu
出版日期Book 2002
关键词Diophantine approximation; Maxima; algorithms; calculus; combinatorics; computational number theory; extre
版次1
doihttps://doi.org/10.1007/978-0-387-21652-2
isbn_softcover978-1-4419-3000-2
isbn_ebook978-0-387-21652-2Series ISSN 1613-5237 Series E-ISSN 2197-4152
issn_series 1613-5237
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

书目名称Computational Excursions in Analysis and Number Theory影响因子(影响力)




书目名称Computational Excursions in Analysis and Number Theory影响因子(影响力)学科排名




书目名称Computational Excursions in Analysis and Number Theory网络公开度




书目名称Computational Excursions in Analysis and Number Theory网络公开度学科排名




书目名称Computational Excursions in Analysis and Number Theory被引频次




书目名称Computational Excursions in Analysis and Number Theory被引频次学科排名




书目名称Computational Excursions in Analysis and Number Theory年度引用




书目名称Computational Excursions in Analysis and Number Theory年度引用学科排名




书目名称Computational Excursions in Analysis and Number Theory读者反馈




书目名称Computational Excursions in Analysis and Number Theory读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:18:49 | 显示全部楼层
1613-5237 nly none are completely solved; and alllend themselves to extensive computational explorations. The techniques for tackling these problems are various and inclu978-1-4419-3000-2978-0-387-21652-2Series ISSN 1613-5237 Series E-ISSN 2197-4152
发表于 2025-3-22 01:49:46 | 显示全部楼层
Computational Excursions in Analysis and Number Theory
发表于 2025-3-22 08:35:38 | 显示全部楼层
发表于 2025-3-22 10:00:26 | 显示全部楼层
Die Stiftungsidee und ihre Umsetzung,y monic polynomial with integer coefficients. A real algebraic integer . is a . if all its conjugate roots have modulus strictly less than 1. A real algebraic integer . is a . if all its conjugate roots have modulus at most 1, and at least one (and hence (see E2) all but one) of the conjugate roots
发表于 2025-3-22 14:01:01 | 显示全部楼层
https://doi.org/10.1007/978-3-8349-9310-6efficients— as is the case in F., L., and A.. However, none of the results of this section are about polynomials with integer coefficients speci
发表于 2025-3-22 19:17:46 | 显示全部楼层
Grundlagen des Stiftungsteuerrechts,rval. This is P1, and it is of a slightly different flavour than most of the other problems in this book, in that there is no restriction on the size of the coefficients. We now state P1 with greater precision.
发表于 2025-3-22 21:26:34 | 显示全部楼层
https://doi.org/10.1007/978-3-8349-9310-6ct lists (repeats are allowed) of integers [..,…,..] and [....] such that.We will call this the Prouhet-Tarry-Escott Problem. We call . the size of the solution and . the degree. We abbreviate the above system by writing.
发表于 2025-3-23 05:24:26 | 显示全部楼层
发表于 2025-3-23 09:19:51 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 12:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表