找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Epidemiology; Data-Driven Modeling Ellen Kuhl Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive

[复制链接]
查看: 19698|回复: 56
发表于 2025-3-21 16:55:55 | 显示全部楼层 |阅读模式
书目名称Computational Epidemiology
副标题Data-Driven Modeling
编辑Ellen Kuhl
视频video
概述Includes more than 400 examples, figures, and problems.Provides problem sets, both analytical and computational.Teaches students how to integrate data and physics-based modeling
图书封面Titlebook: Computational Epidemiology; Data-Driven Modeling Ellen Kuhl Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive
描述.This innovative textbook brings together modern concepts in mathematical epidemiology, computational modeling, physics-based simulation, data science, and machine learning to understand one of the most significant problems of our current time, the outbreak dynamics and outbreak control of COVID-19. It teaches the relevant tools to model and simulate nonlinear dynamic systems in view of a global pandemic that is acutely relevant to human health...If you are a student, educator, basic scientist, or medical researcher in the natural or social sciences, or someone passionate about big data and human health: This book is for you! It serves as a textbook for undergraduates and graduate students, and a monograph for researchers and scientists. It can be used in the mathematical life sciences suitable for courses in applied mathematics, biomedical engineering, biostatistics, computer science, data science, epidemiology, health sciences, machine learning, mathematical biology, numerical methods, and probabilistic programming. This book is a personal reflection on the role of data-driven modeling during the COVID-19 pandemic, motivated by the curiosity to understand it..
出版日期Textbook 2021
关键词Data-driven modeling covid; Data-driven modeling coronavirus; epidemiology covid; epidemiology coronavi
版次1
doihttps://doi.org/10.1007/978-3-030-82890-5
isbn_softcover978-3-030-82892-9
isbn_ebook978-3-030-82890-5
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Computational Epidemiology影响因子(影响力)




书目名称Computational Epidemiology影响因子(影响力)学科排名




书目名称Computational Epidemiology网络公开度




书目名称Computational Epidemiology网络公开度学科排名




书目名称Computational Epidemiology被引频次




书目名称Computational Epidemiology被引频次学科排名




书目名称Computational Epidemiology年度引用




书目名称Computational Epidemiology年度引用学科排名




书目名称Computational Epidemiology读者反馈




书目名称Computational Epidemiology读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:02:14 | 显示全部楼层
发表于 2025-3-22 02:52:07 | 显示全部楼层
Wahlen in der Bundesrepublik Deutschland,ures of these two approaches, we derive and compare explicit and implicit network diffusion and finite element methods for the SIS model. The learning objectives of this chapter on network epidemiology are to
发表于 2025-3-22 06:03:49 | 显示全部楼层
发表于 2025-3-22 09:26:01 | 显示全部楼层
grate data and physics-based modeling.This innovative textbook brings together modern concepts in mathematical epidemiology, computational modeling, physics-based simulation, data science, and machine learning to understand one of the most significant problems of our current time, the outbreak dynam
发表于 2025-3-22 13:35:28 | 显示全部楼层
发表于 2025-3-22 21:02:36 | 显示全部楼层
发表于 2025-3-22 22:42:38 | 显示全部楼层
发表于 2025-3-23 02:13:45 | 显示全部楼层
发表于 2025-3-23 09:24:02 | 显示全部楼层
Textbook 2021, and machine learning to understand one of the most significant problems of our current time, the outbreak dynamics and outbreak control of COVID-19. It teaches the relevant tools to model and simulate nonlinear dynamic systems in view of a global pandemic that is acutely relevant to human health..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 17:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表