找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Diffusion MRI; MICCAI Workshop, She Elisenda Bonet-Carne,Jana Hutter,Fan Zhang Conference proceedings 2020 Springer Nature Sw

[复制链接]
查看: 18476|回复: 55
发表于 2025-3-21 18:13:52 | 显示全部楼层 |阅读模式
书目名称Computational Diffusion MRI
副标题MICCAI Workshop, She
编辑Elisenda Bonet-Carne,Jana Hutter,Fan Zhang
视频videohttp://file.papertrans.cn/233/232240/232240.mp4
概述Contributions on new important topics that are gaining momentum within the diffusion MRI community.Careful mathematical derivations and large number of rich full-color visualizations.Biologically or c
丛书名称Mathematics and Visualization
图书封面Titlebook: Computational Diffusion MRI; MICCAI Workshop, She Elisenda Bonet-Carne,Jana Hutter,Fan Zhang Conference proceedings 2020 Springer Nature Sw
描述.This volume gathers papers presented at the Workshop on Computational Diffusion MRI (CDMRI 2019), held under the auspices of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), which took place in Shenzhen, China on October 17, 2019. .This book presents the latest advances in the rapidly expanding field of diffusion MRI. It shares new perspectives on the latest research challenges for those currently working in the field, but also offers a valuable starting point for anyone interested in learning about computational techniques in diffusion MRI. The book includes rigorous mathematical derivations, a wealth of rich, full-colour visualisations and extensive clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics. Readers will find contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the .in vivo. recovery of microstructural and connectivity features, as well as diffusion-relaxometry and frontlin
出版日期Conference proceedings 2020
关键词diffusion MRI; multidimensional diffusion MRI; combined diffusion-relaxometry MRI; computational techni
版次1
doihttps://doi.org/10.1007/978-3-030-52893-5
isbn_softcover978-3-030-52895-9
isbn_ebook978-3-030-52893-5Series ISSN 1612-3786 Series E-ISSN 2197-666X
issn_series 1612-3786
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Computational Diffusion MRI影响因子(影响力)




书目名称Computational Diffusion MRI影响因子(影响力)学科排名




书目名称Computational Diffusion MRI网络公开度




书目名称Computational Diffusion MRI网络公开度学科排名




书目名称Computational Diffusion MRI被引频次




书目名称Computational Diffusion MRI被引频次学科排名




书目名称Computational Diffusion MRI年度引用




书目名称Computational Diffusion MRI年度引用学科排名




书目名称Computational Diffusion MRI读者反馈




书目名称Computational Diffusion MRI读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:00:13 | 显示全部楼层
Sabine Dittrich,Ilse Jürgenliemkng the inner product of signals, a closed form expression is obtained, which allows its computation using spherical harmonics from a reduced set of acquired data, compatible with most popular diffusion MRI acquisition protocols. Results show that the proposed metric (1) is able to discriminate among
发表于 2025-3-22 01:57:10 | 显示全部楼层
https://doi.org/10.1007/978-3-322-84746-1etic resonance imaging. CSD models the diffusion-weighted signal as the convolution of a fiber orientation distribution function and a “single fiber response function”, representing the signal profile of a population of aligned fibers. The performance of CSD relies crucially on the robust and accura
发表于 2025-3-22 06:02:23 | 显示全部楼层
发表于 2025-3-22 09:34:24 | 显示全部楼层
发表于 2025-3-22 13:09:46 | 显示全部楼层
Manfred Bornhofen,Martin C. Bornhofenneuro- and body imaging. The promise of micro-scale analyses has been in the creation of . that provide information in place of physical histology, while tractography and its related methods offer maps of the neuronal wiring through .. While both approaches have had strong successes at the group lev
发表于 2025-3-22 18:04:52 | 显示全部楼层
发表于 2025-3-22 22:57:01 | 显示全部楼层
Manfred Bornhofen,Martin C. Bornhofeniber tractography. Both are impacted by the free-water partial volume effect that arises at the border of cerebrospinal fluid or in presence of vasogenic edema. Hence, in order to robustly track white matter fibers close to cerebrospinal fluid and in presence of edema, or to extract consistent bioma
发表于 2025-3-23 02:52:42 | 显示全部楼层
Manfred Bornhofen,Martin C. Bornhofenrocess is estimating fiber orientation distribution (FOD), often done from a model such as constrained spherical deconvolution (CSD). Multi-shell (MS) multi-tissue CSD (M-CSD) provides a robust WM FOD by estimating the relative contribution to the dMRI signal from each tissue type (WM, grey matter,
发表于 2025-3-23 07:27:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 04:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表