找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Diffusion MRI; MICCAI Workshop, Qué Enrico Kaden,Francesco Grussu,Jelle Veraart Conference proceedings 2018 Springer Internat

[复制链接]
查看: 10067|回复: 52
发表于 2025-3-21 17:21:44 | 显示全部楼层 |阅读模式
书目名称Computational Diffusion MRI
副标题MICCAI Workshop, Qué
编辑Enrico Kaden,Francesco Grussu,Jelle Veraart
视频video
概述Features the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI’17).Details new computational methods and estimation techniques for microstructure imaging and brain con
丛书名称Mathematics and Visualization
图书封面Titlebook: Computational Diffusion MRI; MICCAI Workshop, Qué Enrico Kaden,Francesco Grussu,Jelle Veraart Conference proceedings 2018 Springer Internat
描述This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice..These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI’17) held in Québec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics..
出版日期Conference proceedings 2018
关键词brain network analysis; connectomics; fibre tractography; high angular resolution diffusion imaging; ima
版次1
doihttps://doi.org/10.1007/978-3-319-73839-0
isbn_softcover978-3-030-08866-8
isbn_ebook978-3-319-73839-0Series ISSN 1612-3786 Series E-ISSN 2197-666X
issn_series 1612-3786
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

书目名称Computational Diffusion MRI影响因子(影响力)




书目名称Computational Diffusion MRI影响因子(影响力)学科排名




书目名称Computational Diffusion MRI网络公开度




书目名称Computational Diffusion MRI网络公开度学科排名




书目名称Computational Diffusion MRI被引频次




书目名称Computational Diffusion MRI被引频次学科排名




书目名称Computational Diffusion MRI年度引用




书目名称Computational Diffusion MRI年度引用学科排名




书目名称Computational Diffusion MRI读者反馈




书目名称Computational Diffusion MRI读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:00:00 | 显示全部楼层
(,, ,)-Compressed Sensing for dMRI with Joint Spatial-Angular Sparsity PriorHARDI), remain underutilized compared to diffusion tensor imaging because the scan times needed to produce accurate estimations of fiber orientation are significantly longer. To accelerate DSI and HARDI, recent methods from compressed sensing (CS) exploit a sparse underlying representation of the da
发表于 2025-3-22 03:54:35 | 显示全部楼层
Spatio-Temporal dMRI Acquisition Design: Reducing the Number of , Samples Through a Relaxed Probabilcheme that maximizes signal quality and satisfies given time constraints is NP-hard. We alleviate that by introducing a relaxed probabilistic model of the problem, for which sub-optimal solutions can be found effectively. Our model is defined in the . space, so that it captures both spacial and temp
发表于 2025-3-22 07:57:59 | 显示全部楼层
发表于 2025-3-22 08:56:33 | 显示全部楼层
发表于 2025-3-22 14:36:08 | 显示全部楼层
Diffeomorphic Registration of Diffusion Mean Apparent Propagator Fields Using Dynamic Programming onescribing the dMRI data and the associated optimization method used to warp non-scalar images obtained from this model. In this paper, we take into account the full information available from the diffusion-weighted signal by using the local SHORE Mean Apparent Propagator (MAP) model. A discrete repr
发表于 2025-3-22 20:05:52 | 显示全部楼层
Diffusion Orientation Histograms (DOH) for Diffusion Weighted Image Analysisor quantizes local diffusion gradients into histograms over spatial location and orientation, in a manner analogous to the quantization of image gradients in the widely used Histogram of Oriented Gradients(HOG) technique. Diffusion gradient symmetry allows representing half of the orientation space
发表于 2025-3-22 21:33:29 | 显示全部楼层
Learning a Single Step of Streamline Tractography Based on Neural Networks based on neural networks. We train 18 different classifiers in order to assess the effect of including neighbourhood information in the learning step or as a post processing step. Moreover, the performance using four different post processing approaches as well as the variation of the number of cla
发表于 2025-3-23 02:02:57 | 显示全部楼层
Probabilistic Tractography for Complex Fiber Orientations with Automatic Model Selection orientations in regions with multiple fiber populations, and the uncertainty in the fiber orientations as a result of noise. In this work, we use a range of multi-tensor models to cope with crossing fibers. The uncertainty in fiber orientation is captured using the Cramér-Rao lower bound. Furthermo
发表于 2025-3-23 06:57:53 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-2 00:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表