找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex and Symplectic Geometry; Daniele Angella,Costantino Medori,Adriano Tomassin Book 2017 Springer International Publishing AG, a part

[复制链接]
查看: 19109|回复: 68
发表于 2025-3-21 19:57:40 | 显示全部楼层 |阅读模式
书目名称Complex and Symplectic Geometry
编辑Daniele Angella,Costantino Medori,Adriano Tomassin
视频video
概述Presents contributions from leading experts and emerging researchers in the field of complex and symplectic geometry.Provides up-to-date overviews on current topics in the field.Provides an excellent
丛书名称Springer INdAM Series
图书封面Titlebook: Complex and Symplectic Geometry;  Daniele Angella,Costantino Medori,Adriano Tomassin Book 2017 Springer International Publishing AG, a part
描述.This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas..
出版日期Book 2017
关键词Complex geometry; Symplectic geometry; CR structure; Algebraic geometry; Global analysis
版次1
doihttps://doi.org/10.1007/978-3-319-62914-8
isbn_softcover978-3-319-87428-9
isbn_ebook978-3-319-62914-8Series ISSN 2281-518X Series E-ISSN 2281-5198
issn_series 2281-518X
copyrightSpringer International Publishing AG, a part of Springer Nature 2017
The information of publication is updating

书目名称Complex and Symplectic Geometry影响因子(影响力)




书目名称Complex and Symplectic Geometry影响因子(影响力)学科排名




书目名称Complex and Symplectic Geometry网络公开度




书目名称Complex and Symplectic Geometry网络公开度学科排名




书目名称Complex and Symplectic Geometry被引频次




书目名称Complex and Symplectic Geometry被引频次学科排名




书目名称Complex and Symplectic Geometry年度引用




书目名称Complex and Symplectic Geometry年度引用学科排名




书目名称Complex and Symplectic Geometry读者反馈




书目名称Complex and Symplectic Geometry读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:34:30 | 显示全部楼层
,Teichmüller Spaces of Generalized Hyperelliptic Manifolds,d components of Teichmüller space corresponding to Generalized Hyperelliptic Manifolds .. These are the quotients . = .∕. of a complex torus . by the free action of a finite group ., and they are also the Kähler classifying spaces for a certain class of Euclidean crystallographic groups ., the ones
发表于 2025-3-22 00:55:06 | 显示全部楼层
发表于 2025-3-22 07:15:07 | 显示全部楼层
发表于 2025-3-22 11:43:23 | 显示全部楼层
发表于 2025-3-22 15:26:39 | 显示全部楼层
发表于 2025-3-22 18:43:43 | 显示全部楼层
Embedding of LCK Manifolds with Potential into Hopf Manifolds Using Riesz-Schauder Theorem,compact LCK manifold with potential can be embedded into a Hopf manifold, if its dimension is at least 3. We give a functional-analytic proof of this result based on Riesz-Schauder theorem and Montel theorem. We provide an alternative argument for compact complex surfaces, deducing the embedding the
发表于 2025-3-23 00:46:50 | 显示全部楼层
Generalized Geometry of Norden and Para Norden Manifolds,r we describe the class of such generalized complex structures defined by a pseudo Riemannian metric . and a .-symmetric operator . such that .. = ., .. These structures include the case of complex Norden manifolds for . = −1 and the case of Para Norden manifolds for . = 1 (Nannicini, J Geom Phys 99
发表于 2025-3-23 05:06:11 | 显示全部楼层
发表于 2025-3-23 07:02:29 | 显示全部楼层
Cohomological Aspects on Complex and Symplectic Manifolds,s on the Bott-Chern and the Aeppli cohomology groups in both cases, since they represent useful tools in studying non Kähler geometry. We give an overview on the comparisons among the dimensions of the cohomology groups that can be defined and we show how we reach the .-lemma in complex geometry and
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 12:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表