找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex Tori; Christina Birkenhake,Herbert Lange Book 1999 Springer Science+Business Media New York 1999 Abelian variety.Algebra.Cohomolog

[复制链接]
楼主: 联系
发表于 2025-3-23 10:52:03 | 显示全部楼层
Embeddings into Projective Space,the Riemann-Roch Theorem of [CAV], Chapter 3. It goes back to a trick of Wirtinger [Wi]: A suitable change of the complex structure of . defines in a canonical way a line bundle . which is positive definite and satisfies .(.) = .(.). As we learned from R. R. Simha, this approach appears already in t
发表于 2025-3-23 14:30:08 | 显示全部楼层
Families of Complex Tori,an anti-involution ’ on End.(.). The skew fields . of finite type over ℚ with anti-involution ′ were classified by Albert. In this chapter we work out which of these algebras can be realized as endomorphism algebras of nondegenerate complex tori.
发表于 2025-3-23 21:12:55 | 显示全部楼层
发表于 2025-3-24 01:19:47 | 显示全部楼层
Book 1999A complex torus is a connected compact complex Lie group. Any complex 9 9 torus is of the form X =
发表于 2025-3-24 05:10:19 | 显示全部楼层
发表于 2025-3-24 10:19:59 | 显示全部楼层
发表于 2025-3-24 14:07:12 | 显示全部楼层
发表于 2025-3-24 15:08:22 | 显示全部楼层
Complex Tori,. = ℂ./ Λ with Λ a lattice in ℂ.. A complex torus is a complex manifold of dimension .. It inherits the structure of a complex Lie group from the vector space ℂ.. In this chapter we study some properties of complex tori without any additional structure.
发表于 2025-3-24 20:07:00 | 显示全部楼层
Intermediate Jacobians, give their definitions, deduce some of their properties and see how they are related. We omit some of their most important aspects, for example the Abel-Jacobi map, which reflects the geometry of the manifold ., since here we are more interested in the complex tori.
发表于 2025-3-25 00:21:22 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 06:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表