找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex Spaces in Finsler, Lagrange and Hamilton Geometries; Gheorghe Munteanu Book 2004 Springer Science+Business Media Dordrecht 2004 Fi

[复制链接]
查看: 51414|回复: 39
发表于 2025-3-21 18:28:08 | 显示全部楼层 |阅读模式
书目名称Complex Spaces in Finsler, Lagrange and Hamilton Geometries
编辑Gheorghe Munteanu
视频videohttp://file.papertrans.cn/232/231539/231539.mp4
丛书名称Fundamental Theories of Physics
图书封面Titlebook: Complex Spaces in Finsler, Lagrange and Hamilton Geometries;  Gheorghe Munteanu Book 2004 Springer Science+Business Media Dordrecht 2004 Fi
描述From a historical point of view, the theory we submit to the present study has its origins in the famous dissertation of P. Finsler from 1918 ([Fi]). In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math­ ematicians (E. Cartan, L. Berwald, S.S. Chem, H. Rund) had the patience to penetrate into a universe of tensors, which made them compare it to a jungle. To aU of us, who study nowadays Finsler geometry, it is obvious that the qualitative leap was made in the 1970‘s by the crystallization of the nonlinear connection notion (a notion which is almost as old as Finsler space, [SZ4]) and by work-skills into its adapted frame fields. The results obtained by M. Matsumoto (coUected later, in 1986, in a monograph, [Ma3]) aroused interest not only in Japan, but also in other countries such as Romania, Hungary, Canada and the USA, where schools of Finsler geometry are founded and are presently widely recognized.
出版日期Book 2004
关键词Finsler geometry; Volume; curvature; manifold; quantum field theory
版次1
doihttps://doi.org/10.1007/978-1-4020-2206-7
isbn_softcover978-90-481-6614-5
isbn_ebook978-1-4020-2206-7Series ISSN 0168-1222 Series E-ISSN 2365-6425
issn_series 0168-1222
copyrightSpringer Science+Business Media Dordrecht 2004
The information of publication is updating

书目名称Complex Spaces in Finsler, Lagrange and Hamilton Geometries影响因子(影响力)




书目名称Complex Spaces in Finsler, Lagrange and Hamilton Geometries影响因子(影响力)学科排名




书目名称Complex Spaces in Finsler, Lagrange and Hamilton Geometries网络公开度




书目名称Complex Spaces in Finsler, Lagrange and Hamilton Geometries网络公开度学科排名




书目名称Complex Spaces in Finsler, Lagrange and Hamilton Geometries被引频次




书目名称Complex Spaces in Finsler, Lagrange and Hamilton Geometries被引频次学科排名




书目名称Complex Spaces in Finsler, Lagrange and Hamilton Geometries年度引用




书目名称Complex Spaces in Finsler, Lagrange and Hamilton Geometries年度引用学科排名




书目名称Complex Spaces in Finsler, Lagrange and Hamilton Geometries读者反馈




书目名称Complex Spaces in Finsler, Lagrange and Hamilton Geometries读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:34:09 | 显示全部楼层
发表于 2025-3-22 02:03:40 | 显示全部楼层
发表于 2025-3-22 05:14:07 | 显示全部楼层
发表于 2025-3-22 08:46:40 | 显示全部楼层
Book 2004In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math
发表于 2025-3-22 12:54:17 | 显示全部楼层
Complex Lagrange geometry,a Lagrange space is obtained. Certainly, this generalization lost a good definition of the length arc and all its consequences, but the obtained notion has the advantage of multiple applications, especially in theoretical physics.
发表于 2025-3-22 18:54:22 | 显示全部楼层
发表于 2025-3-23 00:55:26 | 显示全部楼层
Complex Spaces in Finsler, Lagrange and Hamilton Geometries
发表于 2025-3-23 04:17:48 | 显示全部楼层
发表于 2025-3-23 08:37:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 03:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表