找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex Semisimple Quantum Groups and Representation Theory; Christian Voigt,Robert Yuncken Book 2020 The Editor(s) (if applicable) and Th

[复制链接]
查看: 9391|回复: 35
发表于 2025-3-21 19:35:09 | 显示全部楼层 |阅读模式
书目名称Complex Semisimple Quantum Groups and Representation Theory
编辑Christian Voigt,Robert Yuncken
视频videohttp://file.papertrans.cn/232/231534/231534.mp4
概述Provides a comprehensive, accessible and self-contained introduction to the theory of quantized universal enveloping algebras and their associated quantized semisimple Lie groups.Presents complete pro
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Complex Semisimple Quantum Groups and Representation Theory;  Christian Voigt,Robert Yuncken Book 2020 The Editor(s) (if applicable) and Th
描述.This book provides a thorough introduction to the theory of complex semisimple quantum groups, that is, Drinfeld doubles of q-deformations of compact semisimple Lie groups. The presentation is comprehensive, beginning with background information on Hopf algebras, and ending with the classification of admissible representations of the q-deformation of a complex semisimple Lie group... The main components are:..-   a thorough introduction to quantized universal enveloping algebras over general base fields and generic deformation parameters, including finite dimensional representation theory, the Poincaré-Birkhoff-Witt Theorem, the locally finite part, and the Harish-Chandra homomorphism,..-   the analytic theory of quantized complex semisimple Lie groups in terms of quantized algebras of functions and their duals,..-   algebraic representation theory in terms of category O, and..-   analytic representationtheory of quantized complex semisimple groups... Given its scope, the book will be a valuable resource for both graduate students and researchers in the area of quantum groups..
出版日期Book 2020
关键词Category O; Drinfeld Double; Harish-Chandra Modules; Quantized Enveloping Algebras; Quantum Groups
版次1
doihttps://doi.org/10.1007/978-3-030-52463-0
isbn_softcover978-3-030-52462-3
isbn_ebook978-3-030-52463-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Complex Semisimple Quantum Groups and Representation Theory影响因子(影响力)




书目名称Complex Semisimple Quantum Groups and Representation Theory影响因子(影响力)学科排名




书目名称Complex Semisimple Quantum Groups and Representation Theory网络公开度




书目名称Complex Semisimple Quantum Groups and Representation Theory网络公开度学科排名




书目名称Complex Semisimple Quantum Groups and Representation Theory被引频次




书目名称Complex Semisimple Quantum Groups and Representation Theory被引频次学科排名




书目名称Complex Semisimple Quantum Groups and Representation Theory年度引用




书目名称Complex Semisimple Quantum Groups and Representation Theory年度引用学科排名




书目名称Complex Semisimple Quantum Groups and Representation Theory读者反馈




书目名称Complex Semisimple Quantum Groups and Representation Theory读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:16:16 | 显示全部楼层
发表于 2025-3-22 02:04:10 | 显示全部楼层
发表于 2025-3-22 07:47:49 | 显示全部楼层
发表于 2025-3-22 10:04:55 | 显示全部楼层
发表于 2025-3-22 15:37:41 | 显示全部楼层
发表于 2025-3-22 18:32:10 | 显示全部楼层
发表于 2025-3-22 23:55:08 | 显示全部楼层
Dirk Vallée,Barbara Engel,Walter Vogtr-Drinfeld modules and complex quantum groups. Our main goal is a proof of the Verma module annihilator Theorem, following the work of Joseph and Letzter. We refer to (Farkas and Letzter, Quantized representation theory following Joseph, in ., vol. 243 of .) for a survey of the ideas involved in the proof and background.
发表于 2025-3-23 02:46:18 | 显示全部楼层
发表于 2025-3-23 05:55:34 | 显示全部楼层
Category ,,r-Drinfeld modules and complex quantum groups. Our main goal is a proof of the Verma module annihilator Theorem, following the work of Joseph and Letzter. We refer to (Farkas and Letzter, Quantized representation theory following Joseph, in ., vol. 243 of .) for a survey of the ideas involved in the proof and background.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 03:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表