找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex Semisimple Lie Algebras; Jean-Pierre Serre Book 2001 Springer-Verlag Berlin Heidelberg 2001 Lie algebra.Lie algebras.Matrix.Repres

[复制链接]
楼主: Grant
发表于 2025-3-23 13:36:37 | 显示全部楼层
发表于 2025-3-23 15:21:56 | 显示全部楼层
,Anlagen für den ruhenden Kraftverkehr,In this chapter, . denotes a complex semisimple Lie algebra, . a Cartan subalgebra of . and . the corresponding root system. We choose a base . = α.,…, α. of ., and we denote by . the set of positive roots (with respect to .).
发表于 2025-3-23 20:43:15 | 显示全部楼层
https://doi.org/10.1007/978-3-662-25020-4This chapter contains no proofs. All the Lie groups considered (except in Sec. 7) are . groups.
发表于 2025-3-24 01:31:01 | 显示全部楼层
Nilpotent Lie Algebras and Solvable Lie Algebras,The Lie algebras considered in this chapter are finite-dimensional algebras over a field .. In Sees. 7 and 8 we assume that . has characteristic 0. The Lie bracket of . and . is denoted by [.], and the map . → [.] by ad ..
发表于 2025-3-24 05:58:02 | 显示全部楼层
Semisimple Lie Algebras (General Theorems),In this chapter, the base field . is a field of characteristic zero.The Lie algebras and vector spaces considered have finite dimension over ..
发表于 2025-3-24 10:31:31 | 显示全部楼层
Cartan Subalgebras,In this chapter (apart from Sec. 6) the ground field is the field . of complex numbers. The Lie algebras considered are finite dimensional.
发表于 2025-3-24 11:25:10 | 显示全部楼层
The Algebra , and Its Representations,In this chapter (apart from Sec. 6) the ground field is the field . of complex numbers.
发表于 2025-3-24 16:01:52 | 显示全部楼层
发表于 2025-3-24 20:49:37 | 显示全部楼层
Structure of Semisimple Lie Algebras,Throughout this chapter, .denotes a ., and . a . of . (cf. Chap. III).
发表于 2025-3-25 02:30:43 | 显示全部楼层
Linear Representations of Semisimple Lie Algebras,In this chapter, . denotes a complex semisimple Lie algebra, . a Cartan subalgebra of . and . the corresponding root system. We choose a base . = α.,…, α. of ., and we denote by . the set of positive roots (with respect to .).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 15:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表