找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex Non-Kähler Geometry; Cetraro, Italy 2018 Sławomir Dinew,Sebastien Picard,Alberto Verjovsky, Book 2019 Springer Nature Switzerland A

[复制链接]
查看: 44553|回复: 35
发表于 2025-3-21 20:09:29 | 显示全部楼层 |阅读模式
书目名称Complex Non-Kähler Geometry
副标题Cetraro, Italy 2018
编辑Sławomir Dinew,Sebastien Picard,Alberto Verjovsky,
视频videohttp://file.papertrans.cn/232/231512/231512.mp4
概述Presents surveys from leading experts in the field of complex geometry.Provides an up-to-date overview of research topics in the field.Provides an excellent introduction to the field, aimed at a wide
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Complex Non-Kähler Geometry; Cetraro, Italy 2018 Sławomir Dinew,Sebastien Picard,Alberto Verjovsky, Book 2019 Springer Nature Switzerland A
描述.Collecting together the lecture notes of the CIME Summer School held in Cetraro in July 2018, the aim of the book is to introduce a vast range of techniques which are useful in the investigation of complex manifolds.  The school consisted of four courses, focusing on both the construction of non-Kähler manifolds and the understanding of a possible classification of complex non-Kähler manifolds. In particular, the courses by Alberto Verjovsky and Andrei Teleman introduced tools in the theory of foliations and analytic techniques for the classification of compact complex surfaces and compact Kähler manifolds, respectively. The courses by Sebastien Picard and Sławomir Dinew focused on analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-Kähler geometry. .
出版日期Book 2019
关键词Anomaly Flow; LVMB Manifold; Non-Kähler Complex Manifold; Non-Kählerian Compact Complex Surface; Pluripo
版次1
doihttps://doi.org/10.1007/978-3-030-25883-2
isbn_softcover978-3-030-25882-5
isbn_ebook978-3-030-25883-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Complex Non-Kähler Geometry影响因子(影响力)




书目名称Complex Non-Kähler Geometry影响因子(影响力)学科排名




书目名称Complex Non-Kähler Geometry网络公开度




书目名称Complex Non-Kähler Geometry网络公开度学科排名




书目名称Complex Non-Kähler Geometry被引频次




书目名称Complex Non-Kähler Geometry被引频次学科排名




书目名称Complex Non-Kähler Geometry年度引用




书目名称Complex Non-Kähler Geometry年度引用学科排名




书目名称Complex Non-Kähler Geometry读者反馈




书目名称Complex Non-Kähler Geometry读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:21:10 | 显示全部楼层
Ulrike Fettke,Mona Bergmann,Elisabeth WackerVII surface. We included an Appendix in which we introduce several fundamental objects in non-Kählerian complex geometry (the Picard group of a compact complex manifold, the Gauduchon degree, the Kobayashi-Hitchin correspondence for line bundles, unitary flat line bundles), and we prove basic properties of these objects.
发表于 2025-3-22 04:21:57 | 显示全部楼层
发表于 2025-3-22 07:14:48 | 显示全部楼层
发表于 2025-3-22 08:55:50 | 显示全部楼层
Book 2019hler manifolds, respectively. The courses by Sebastien Picard and Sławomir Dinew focused on analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-Kähler geometry. .
发表于 2025-3-22 15:19:13 | 显示全部楼层
0075-8434 n analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-Kähler geometry. .978-3-030-25882-5978-3-030-25883-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-22 20:11:04 | 显示全部楼层
Eva Brauer,Tamara Dangelmaier,Daniela Hunoldic. Section 2.3 introduces the Anomaly flow in the simplest case of zero slope, where the flow can be understood as a deformation path connecting non-Kähler to Kähler geometry. Section 2.4 concerns the Anomaly flow with . corrections, which is motivated from theoretical physics and canonical metrics
发表于 2025-3-22 23:16:27 | 显示全部楼层
发表于 2025-3-23 03:11:38 | 显示全部楼层
https://doi.org/10.1007/978-3-030-25883-2Anomaly Flow; LVMB Manifold; Non-Kähler Complex Manifold; Non-Kählerian Compact Complex Surface; Pluripo
发表于 2025-3-23 09:12:06 | 显示全部楼层
978-3-030-25882-5Springer Nature Switzerland AG 2019
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 21:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表