找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex Motions and Chaos in Nonlinear Systems; Valentin Afraimovich,José António Tenreiro Machado Book 2016 Springer International Publis

[复制链接]
查看: 7692|回复: 44
发表于 2025-3-21 19:36:42 | 显示全部楼层 |阅读模式
书目名称Complex Motions and Chaos in Nonlinear Systems
编辑Valentin Afraimovich,José António Tenreiro Machado
视频video
概述Presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, nonlinear dynamics in fluid and thermal dynamics, nonlinear geophysical dynamics, time-dela
丛书名称Nonlinear Systems and Complexity
图书封面Titlebook: Complex Motions and Chaos in Nonlinear Systems;  Valentin Afraimovich,José António Tenreiro Machado Book 2016 Springer International Publis
描述This book brings together 12 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.
出版日期Book 2016
关键词Bio-network Dynamics; Complex Network; Fluid Dynamics; Fluid-structure Interaction; Hamiltonian Systems;
版次1
doihttps://doi.org/10.1007/978-3-319-28764-5
isbn_softcover978-3-319-80418-7
isbn_ebook978-3-319-28764-5Series ISSN 2195-9994 Series E-ISSN 2196-0003
issn_series 2195-9994
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

书目名称Complex Motions and Chaos in Nonlinear Systems影响因子(影响力)




书目名称Complex Motions and Chaos in Nonlinear Systems影响因子(影响力)学科排名




书目名称Complex Motions and Chaos in Nonlinear Systems网络公开度




书目名称Complex Motions and Chaos in Nonlinear Systems网络公开度学科排名




书目名称Complex Motions and Chaos in Nonlinear Systems被引频次




书目名称Complex Motions and Chaos in Nonlinear Systems被引频次学科排名




书目名称Complex Motions and Chaos in Nonlinear Systems年度引用




书目名称Complex Motions and Chaos in Nonlinear Systems年度引用学科排名




书目名称Complex Motions and Chaos in Nonlinear Systems读者反馈




书目名称Complex Motions and Chaos in Nonlinear Systems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:44:33 | 显示全部楼层
发表于 2025-3-22 02:54:10 | 显示全部楼层
发表于 2025-3-22 06:11:48 | 显示全部楼层
发表于 2025-3-22 11:55:08 | 显示全部楼层
发表于 2025-3-22 15:40:39 | 显示全部楼层
发表于 2025-3-22 18:40:52 | 显示全部楼层
https://doi.org/10.1007/978-0-85729-256-8period-doubling cascade. The existence of homoclinic and heteroclinic orbits is rigorously proved, and a theoretical control technique for the extended chaos is proposed. The results are supported with the aid of simulations. Arbitrarily high-dimensional chaotic discrete-time dynamical systems can b
发表于 2025-3-23 00:20:29 | 显示全部楼层
Anna Capietto,Peter Kloeden,Rafael Ortegawall in a 1D canal. This piston wall is assumed to be adiabatic (without internal degrees of freedom) and fluctuates owing to collisions with the two gases or solvents that it separates..If the pressures in the two semi-infinite reservoirs are equal, i.e., even if there is macroscopic equilibrium, t
发表于 2025-3-23 03:41:24 | 显示全部楼层
https://doi.org/10.1007/978-3-642-32906-7ponding stability and bifurcation analysis for periodic motions are discussed. The bifurcation trees of periodic motions to chaos in a parametric oscillator with quadratic nonlinearity are presented. Numerical illustration shows good agreement between the analytical and numerical results.
发表于 2025-3-23 05:51:16 | 显示全部楼层
Angelo Luongo,Manuel Ferretti,Simona Di Ninoperiodic motions to chaos are presented. The stability and bifurcation of periodic motions are determined through eigenvalue analysis. Finally, the numerical results of periodic motions of the Duffing oscillator are illustrated to verify the analytical prediction. The method used herein is applicabl
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 13:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表