找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex Kleinian Groups; Angel Cano,Juan Pablo Navarrete,José Seade Book 2013 Springer Basel 2013 Kleinian groups.complex hyperbolic geome

[复制链接]
楼主: CLAST
发表于 2025-3-25 04:31:58 | 显示全部楼层
§ 6 Die Vermögensrechnung des Bundese constant negative holomorphic curvature. This is analogous to but different from the real hyperbolic space. In the complex case, the sectional curvature is constant on complex lines, but it changes when we consider real 2-planes which are not complex lines.
发表于 2025-3-25 07:48:53 | 显示全部楼层
发表于 2025-3-25 14:17:49 | 显示全部楼层
发表于 2025-3-25 18:45:14 | 显示全部楼层
§ 6 Die Vermögensrechnung des Bundese constant negative holomorphic curvature. This is analogous to but different from the real hyperbolic space. In the complex case, the sectional curvature is constant on complex lines, but it changes when we consider real 2-planes which are not complex lines.
发表于 2025-3-25 20:05:18 | 显示全部楼层
https://doi.org/10.1007/978-3-662-54308-5in . that illustrates the diversity of possibilities one has when defining the notion of “limit set”. In this example we see that there are several nonequivalent such notions, each having its own interest.
发表于 2025-3-26 00:48:02 | 显示全部楼层
发表于 2025-3-26 07:25:48 | 显示全部楼层
Kommentar zu C. Knill und D. Lehmkuhlsider Kleinian subgroups of PSL(3, .) whose geometry and dynamics are “governed” by a subgroup of PSL(2, .). That is the subject we address in this chapter. The corresponding subgroup in PSL(2 ,.) is the .. These groups play a significant role in the classification theorems we give in ..
发表于 2025-3-26 09:44:37 | 显示全部楼层
发表于 2025-3-26 13:16:41 | 显示全部楼层
Staatsentwicklung und Policyforschungs that every compact Riemann surface can be obtained as the quotient of an open set in the Riemann sphere S2 which is invariant under the action of a Schottky group. On the other hand, the limit sets of Schottky groups have rich and fascinating geometry and dynamics, which has inspired much of the c
发表于 2025-3-26 18:00:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 23:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表